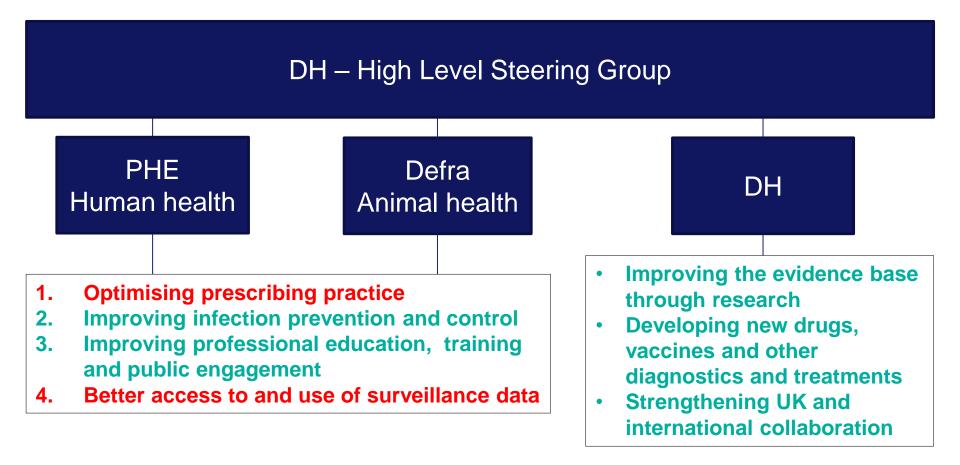


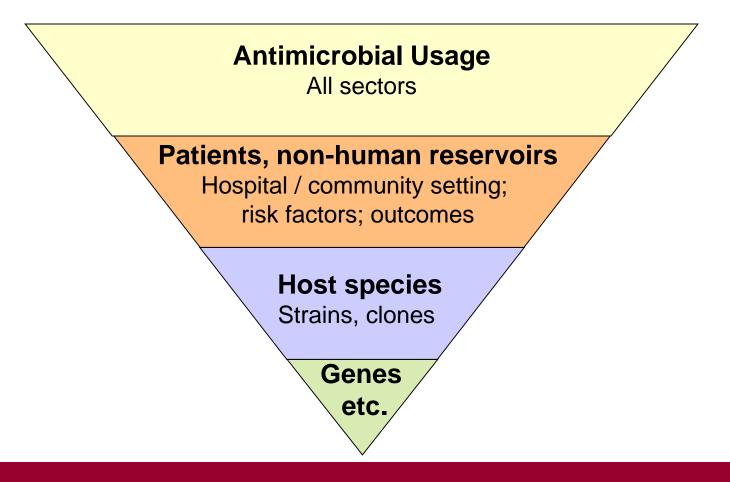
Antimicrobial Resistance in the UK


Neil Woodford

Antimicrobial Resistance & Healthcare Associated Infections (AMRHAI) Reference Unit

© Crown copyright

UK 5-year AMR Strategy 2013-18: Seven key areas for action



Mechanisms of antibiotic resistance

- Intrinsic or acquired
- Drug inactivation
- Drug modification
- Drug *target* modification
- Reduced accumulation of drug
 - reduced cell permeability (less in)
 - efflux (more pumped out)
- Alternative metabolic pathways (bypass)

The complexities of AMR epidemiology

Three strands for surveillance of AMR

- 1. data on <u>consumption of antibiotics</u> in both humans and animals, [...] which would help understand the link between antimicrobial use and the development of resistance.
- 2. data on <u>resistance rates</u> for various drug-bug combinations and their impact on patients' health.
- **3.** <u>molecular biological data</u> to explain the biological basis of resistance, through characterisation of the types of resistant bacteria and the genetic reasons for their resistance.
- This information should be <u>gathered within a 'one</u> <u>health' perspective</u>, covering animals and humans and the environment to provide a complete picture

The resistance ratchet keeps turning

Pathogen	Established problems	Emerging threats
E. faecium	VRE, HLGR, Amp-R	Lin-R, Dap-R, Tig-R
<mark>S</mark> . aureus	MRSA (ha/ca)	Van-R, Lin-R, Dap-R
K lebsiella	ESBLs	Carbapenemases, Col-R
A cinetobacter	MDR, Carbapenemases	Tig-R, Col-R
P seudomonas	MDR, except Col	Carbapenemases, Col-R
<i>Enterobacter</i>	AmpC, ESBLs	Carba-R, Carbapenemases
E. coli	Cip-R, ESBLs	Carbapenemases

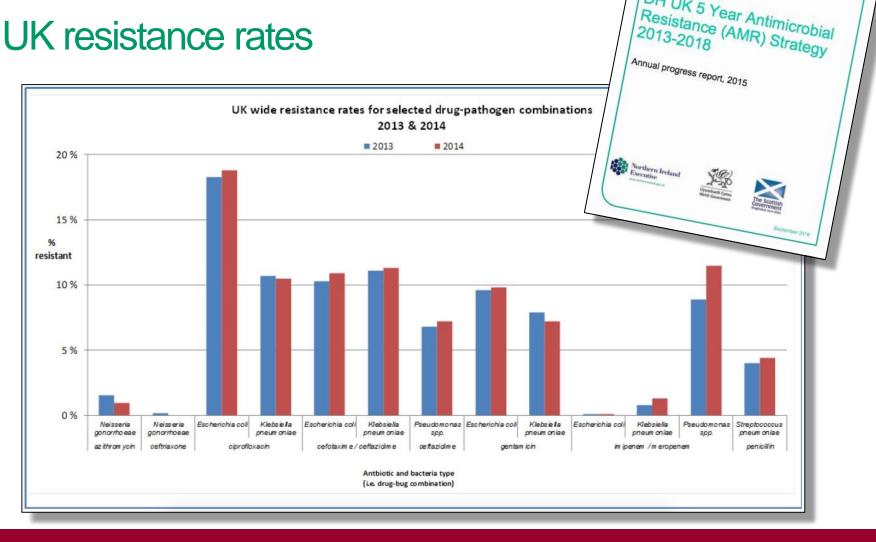
• Historic focus on Gram-positives

AMR mechanisms in Gram-positives (examples)

Antibiotic class	Staphylococci	Enterococci	Pneumococci (and viridans)	Beta-haem streps (A,C,G)	
Penicillins	Ilins Penicillinase PBP-mediate (common) faecium); Penicillinase rare)		PBP-mediated (common)	No reports of resistance	
Pen'ase- stable penicillins	PBP-mediated (<i>mecA/mecC</i>)	-	-	-	
3rd-generation cephalosporins	PBP-mediated (<i>mecA/mecC</i>)	Intrinsic	PBP-mediated (rarer than Pen-R)	No reports of resistance	
Vancomycin	Mutations (rare); VanA (<u>very</u> rare)	VanA; VanB; VanC (intrinsic); other rarer <i>van</i> types	No reports of resistance	No reports of resistance	
Teicoplanin	Intrinsic (some CoNS); mutations (rare); VanA (<u>very</u> rare)	VanA; VanB; VanC (intrinsic); other rarer <i>van</i> types	No reports of resistance	No reports of resistance	

AMR mechanisms in Gram-positives (examples)

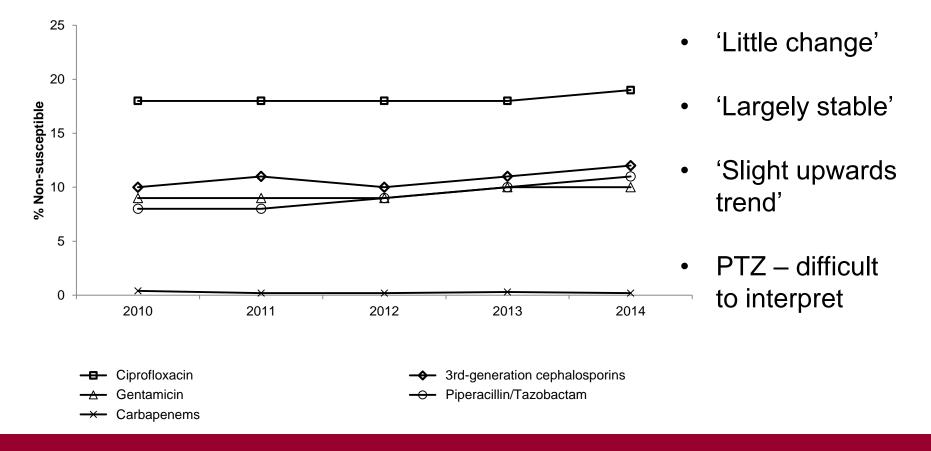
Antibiotic class	Staphylococci	Enterococci	Pneumococci (and viridans)	Beta-haem streps (A,C,G)
Aminoglycosides	AMEs	Intrinsic; AMEs (high level)	Intrinsic	Intrinsic
Macrolides	Erm(A,C); Msr	Erm(B)	Erm(B); Mef	Erm(B)
Lincosamides	Erm(A,C); Lnu	Intrinsic; Erm(B); Lnu	Erm(B); Lnu	Erm(B); Lnu
Tetracyclines	Tet(K,L,M)	Tet(M)	Tet(M)	Tet(M)
Mupirocin	Mutations; Mup(A,B)	-	-	-
Rifampicin	Mutations	Mutations	Mutations	-
Daptomycin	Rare (mutations)	Rare (mutations)	-	-
Linezolid	Rare: mutations; <i>cfr; optrA</i>	Rare: mutations; <i>cfr; optrA</i>	-	-
Synercid	Vat(A,B,C); efflux	Intrinsic (<i>E. faecalis</i>); Vat(D,E)	-	-


The resistance ratchet keeps turning

Pathogen	Established problems	Emerging threats
E. faecium	VRE, HLGR, Amp-R	Lin-R, Dap-R, Tig-R
S. aureus	MRSA (ha/ca)	Van-R, Lin-R, Dap-R
K lebsiella	ESBLs	Carbapenemases, Col-R
A cinetobacter	MDR, Carbapenemases	Tig-R, Col-R
P seudomonas	MDR, except Col	Carbapenemases, Col-R
E nterobacter	AmpC, ESBLs	Carba-R, Carbapenemases
E. coli	Cip-R, ESBLs	Carbapenemases

- 5 of 7 ESKAPEEs are Gram-negative
- Increasing reliance on carbapenems
- <u>The</u> resistance issue for the next 5-10 years

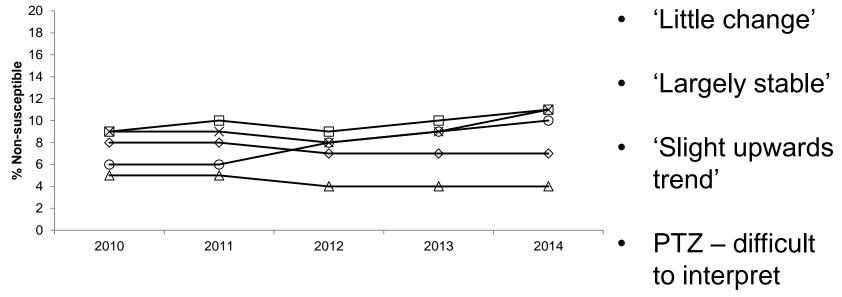
UK resistance rates


England

DH UK 5 Year Antimicrobial

HM Government

E. coli BSI resistance, 2010-14



11 RCPath training, 19th Oct 2016 © Crown Copyright

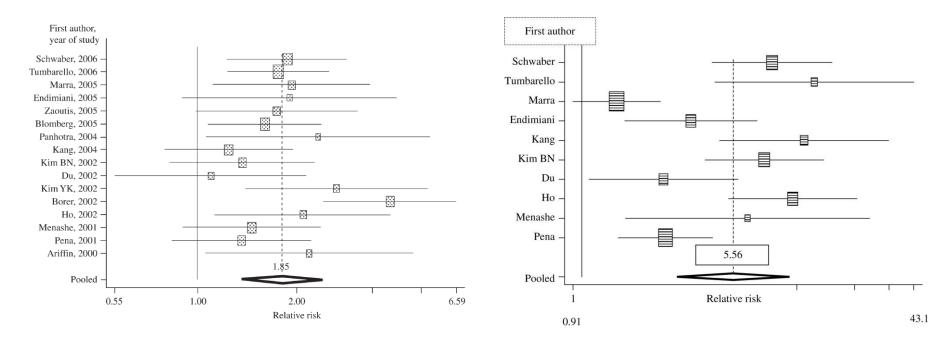
ESPAUR 2014: Year 2 Report

Pseudomonas BSI resistance, 2010-14

 $-\Box$ Ciprofloxacin \rightarrow Ceftazidime \triangle Gentamicin $-\Theta$ Piperacillin/Tazobactam $-\times$ Carbapenems

Resistance to beta-lactams

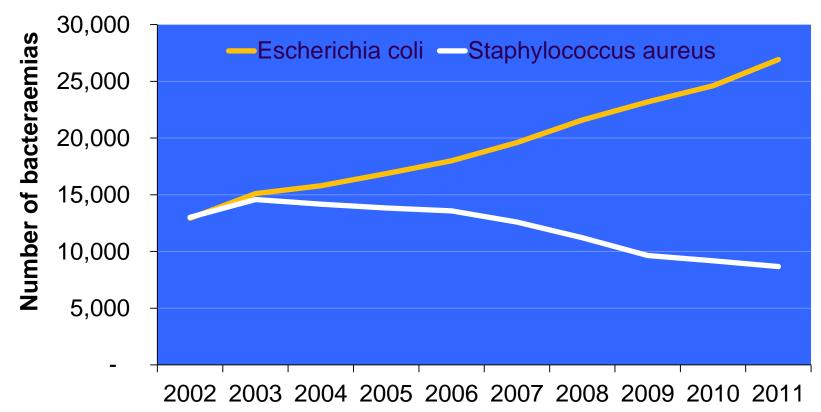
13 RCPath training, 19th Oct 2016 © Crown Copyright


Can you distinguish TEM-1 from CTX-M-15?

Enzyme	Examples	Confer resiatance to
Penicilllinases	TEM-1 /-2, SHV-1, OXA- 1/-30	Penicillins; early cephalosporins; overexpression affects penicillin- inhibitor combinations
ESBLs	TEM-, SHV-, OXA-, CTX- M, VEB, PER	All generation cephalosporins (not cephamycins)
pAmpC	CMY, ACC, DHA, FOX, MOX, ENT / EBC	3 rd gen cephs (not 4 th); cephamycins

• Carbapenems remain active against producers of these enzymes and are increasingly used for treatment

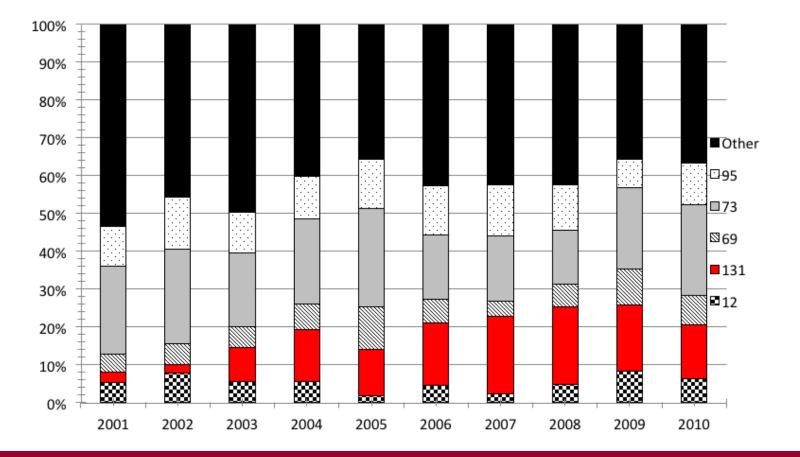
ESBL vs. non-ESBL bacteraemia


Mortality

Delayed appropriate Rx

Schwaber & Carmeli, JAC 2007; 60: 913

Rising numbers of *E. coli* bacteraemias



- E. coli bacteraemia continues to rise: >35000 cases in 2015
 - c. 3500 'cephalosporin-resistant infections' p.a.; most ESBLs

LabBase2 data, England only

A few E. coli STs predominate among BSIs

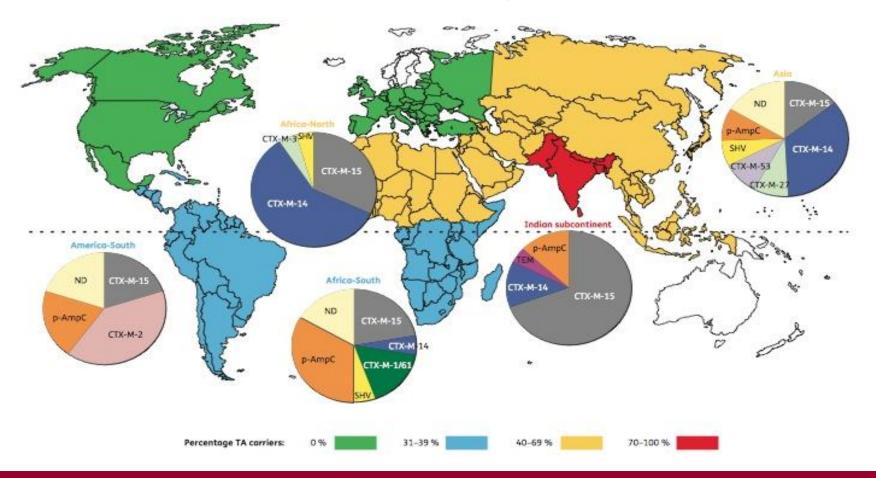
17 RCPath training, 19th Oct 2016 © Crown Copyright

Day et al. 2016 JAC

AMR is not equally distributed among E. coli STs

		4	Non-susceptibility (%)								β-lactamase (%)				
сс	Total no.	AMX	AMC	ZTq	CTX	CAZ	CIP	GEN	TIG	IMI	CTX-M other ^d	CTX-M gp 1	CTX-M gp 9	Other	Non-ESBL
73	449	55.9	27.8	9.1	1.5	1.8	1.3	1.6	0.2	0.0	0.0	0.0	0.0	1.1	98.9
131	302	83.4	59.3	22.2	35.0	29.5	64.2	20.2	0.0	0.0	0.3	32.5	0.3	1.0	65.9
95	245	45.3	13.9	2.9	0.0	0.0	0.4	2.4	0.0	0.0	0.0	0.0	0.0	0.0	100
69	149	81.9	32.2	10.1	1.4	2.0	6.7	4.0	0.7	0.0	0.0	0.7	0.0	0.0	99.3
12	119	71.4	28.6	7.6	1.8	5.0	0.8	3.4	0.0	0.0	0.0	0.8	0.0	0.0	97.5
other ^a	902	60.9	27.7	9.3	5.3	5.3	15.2	6.4	0.1	0.2	0.2	2.2	0.1	0.1	96.5
TOTAL	2166	63.3	30.9	10.3	7.2	7.1	16.1	6.6	0.1	0.1	0.1	5.5	0.1	0.1	93.4

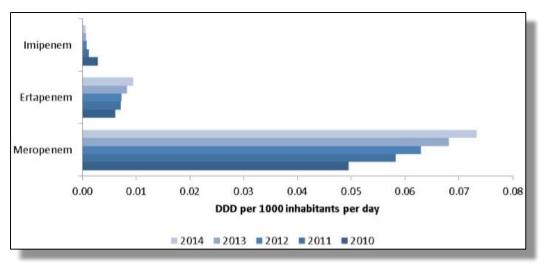
High-Risk Clones (HiRiCs)


- The risk of development of resistance during therapy (mutationselection) is small in most cases
- Most problems of antibiotic resistance derived from the spread and further acquisition of particular clones, HiRiCs, able to efficiently colonize the host or be transmitted between hosts
- World-wide clonal epidemics
- HiRiCs might persist and acquired resistance genes as well disseminate among local clones its antibiotic resistance genes (horizontal gene transfer), favoring endemicity

Baquero & Coque. FEMS Rev 2011 35:705

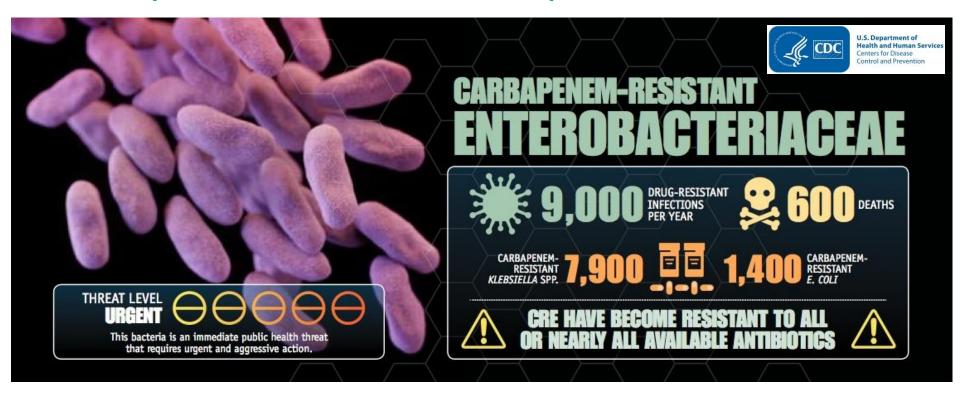
Destination influences risk and type of resistance

20 RCPath training, 19th Oct 2016 © Crown Copyright


Ostholm-Balkhed et al. JAC 2013; 68: 2144-53

Carbapenemases

Carbapenem usage is increasing

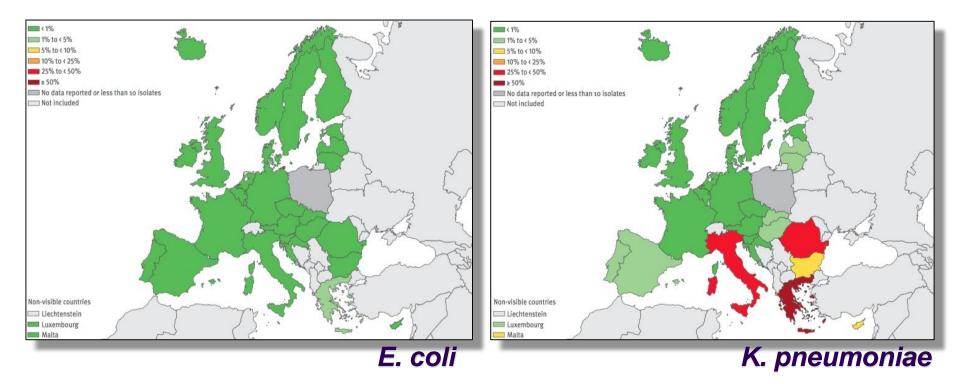


- Carbapenems = 0.3% of total antibiotic consumption in 2013
- BUT use increased by 31.3% in England between 2010 and 2013
- Mostly in the hospital sector, <1% in primary care.
- MEM = c. 90% of carbapenem use

- 1 use of carbapenems
- new selective pressures, ...with consequences

The apex of *current* resistance problems?

- only colistin is currently active against 90% of CRE (UK data)
- colistin resistance is a growing threat

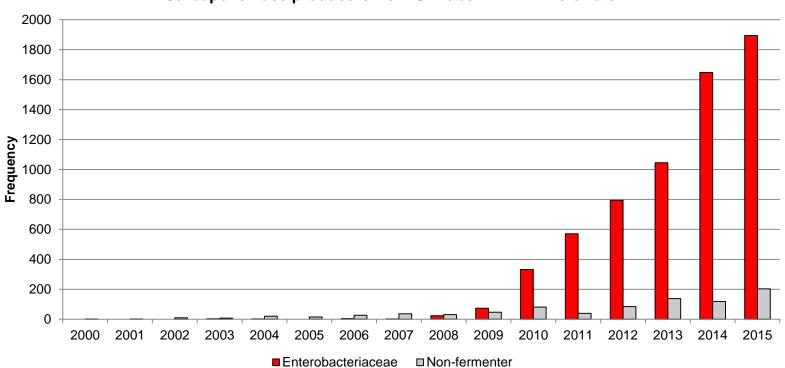

Acquired carbapenemases

Class	Carbapenemase	Enterobacteriaceae	Non-fermenters
A (non-metallo)	KPC	+++	+
	BIC, GES, IMI, NMC, SME	+	+/-
B (metallo)	IMP*, VIM*	+++	+++
	NDM	+++	++
	AIM, DIM, GIM, SIM, SPM, TMB	-	++
D (non-metallo)	OXA-48-like	+++	+/-
	OXA-23, -40, -58, -143, - 235	+/-	+++

24 RCPath training, 19th Oct 2016 © Crown Copyright

Carbapenem non-susceptibility, EARS-Net 2014

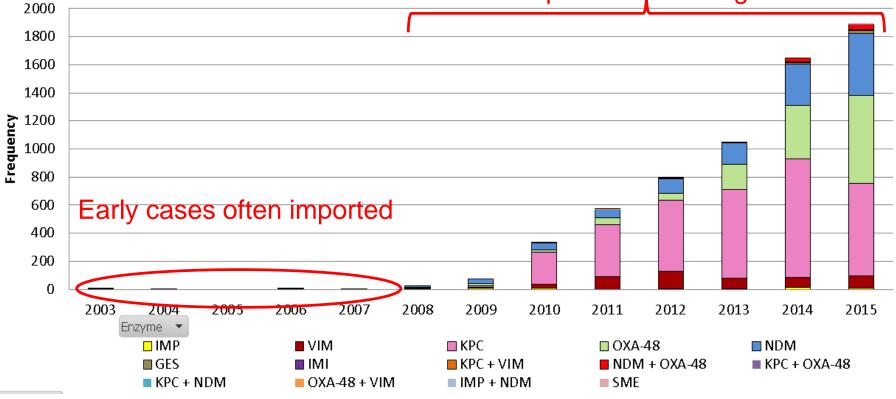
- 'green' data risk giving a false sense of security to non-experts
- only 9% of UK carbapenemase producers are from blood cultures



Enhancing surveillance with reference microbiology

- Reference laboratory provides specialist microbiology that seeks to explain trends
 - Is at the centre of a national / regional laboratory network
 - Benefits from a 'spider's web effect'
 - Monitors new and emerging AMR issues, long before they register in surveillance programmes

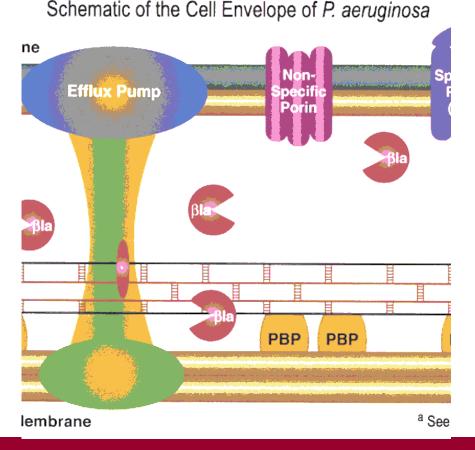
Most 'CPOs' in the UK are Enterobacteriaceae


Carbapenemase producers from UK labs: AMRHAI referrals

AMRHAI, Unpublished data

CPE in the UK, 2000-2015

Imported & 'home grown'



Klebsiella spp. 69%; E. coli 18%, Enterobacter spp., 9%; others 4%

AMRHAI, Unpublished data

Impermeability, efflux & carbapenem^R

- Only *P. aeruginosa* readily develops carbapenem resistance
 - imipenem: loss of D2 porin expression
 - meropenem: up-regulated efflux (MexAB-OprM) and D2 loss

MBL +ve P. aeruginosa lineages are widespread

VNTR complex	VNTR type ^o	No. of different VNTR profiles	MLST type(s) (no. of isolates tested)	No. of isolates ^b	No. of submitting laboratories	MBLs detected (no. of isolates)
A	11,3,4,3,2,2,x,4,x	6	ST111 (11)	75	25	VIM (70)
						IMP (5)
В	13,3,6,4,5,1,x,2,x	16	ST235 (18)	52	25	VIM (46)
						IMP (6)
С	12,3,4,5,3,1,x,2,x	11	ST233 (10)	26	16	VIM (26)
D	11,3,2,15,3,1,x,3,x	6	ST654 (10), ST964 (1)	19	11	VIM (17)
						IMP (1)
						NDM (1)
E	13,2,1,5,2,3,6,x,x	7	ST357 (9)	30	9	VIM (30)
F	12,4,6,5,3,1,10,x,x	3	ST773 (5)	13	11	VIM (13)
Others	diverse	26	not done	36	25	VIM (25)
						IMP (10)
						VIM and NDM (1

Table 1. Typing data for the six main VNTR complexes identified (n=251)

^ax represents loci where the repeat number varies between isolates within a complex.

^bOne isolate per patient was included; these numbers include 4 isolates (complex B), 14 isolates (complex E) and 1 isolate (complex F) where the MBL-positive organisms were no longer available in the archive for VNTR analysis, but which were previously found to share a PFGE profile, and are from the same hospital outbreak as other isolates in the respective complex. Isolates were also received from an additional 39 patients at London_17 with a PFGE profile corresponding to complex A. These are not included here as they had not been screened for MBL genes and were no longer available in our archives.

Polymyxin resistance

Most CPE are multi-resistant, 2014

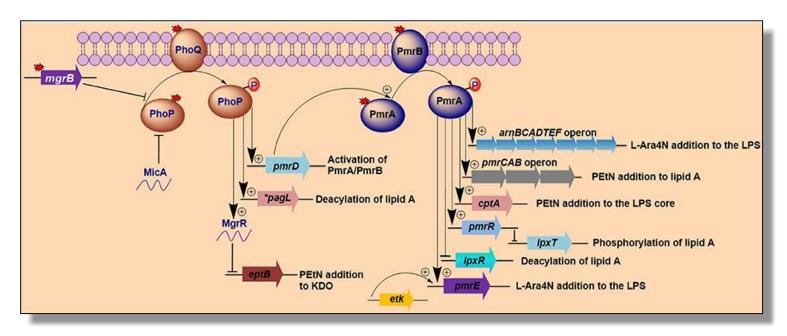
	Proportion of susceptibility, % [a]									
Antibiotic		etallo-enzyme DM, VIM, IMP)		Non-metallo-enzyme producers (KPC, OXA-48, GES, IMI) (n=c. 1250)						
	E. coli	Klebsiella	Enterobacter / Citrobacter	E. coli	Klebsiella	Enterobacter / Citrobacter				
Imipenem (IPM)	3	2	3	48	7	40				
IPM-EDTA [b]	100	88	94	69	17	42				
Meropenem	6	5	8	73	12	51				
Ertapenem	3	0	3	4	0	1				
Ampicillin	0	0	0	0	0	0				
Co-amoxiclav	1	0	0	1	0	0				
Piperacillin (PIP)	0	0	1	0	0	1				
PIP-tazobactam	2	0	1	1	0	1				
Cefotaxime	1	0	0	10	3	13				
Ceftazidime	1	0	0	25	7	34				
Aztreonam	13	13	23	15	7	34				
Ciprofloxacin	17	6	20	61	30	68				
Gentamicin	31	24	24	51	56	66				
Tobramycin	22	7	8	51	47	59				
Amikacin	49	33	62	92	82	96				
Colistin	100	93	93	100	94	100				
Tigecycline	99	52	73	98	59	80				

a. Susceptibility defined using BSAC v. 13 (June 2014) breakpoints

b. Diagnostic test to distinguish metallo- from non-metallo- enzymes; not for therapeutic use

Active in vitro against <50% isolates Active in vitro against 50-90% isolates Active in vitro against >90% isolates

Health Protection Report Vol 9 No. 2 – 16 January 2015


The Italian experience ... one we'd sooner not share

- 178 KPC-KP isolates
- 76 (43%) were resistant to colistin
- (increased from 22% in 2010)
- Col-R KPC-KP detected in all 21 participating laboratories
- nationwide dissemination of Col-R KPC-KP not yet reported in most other settings of high KPC-KP endemicity

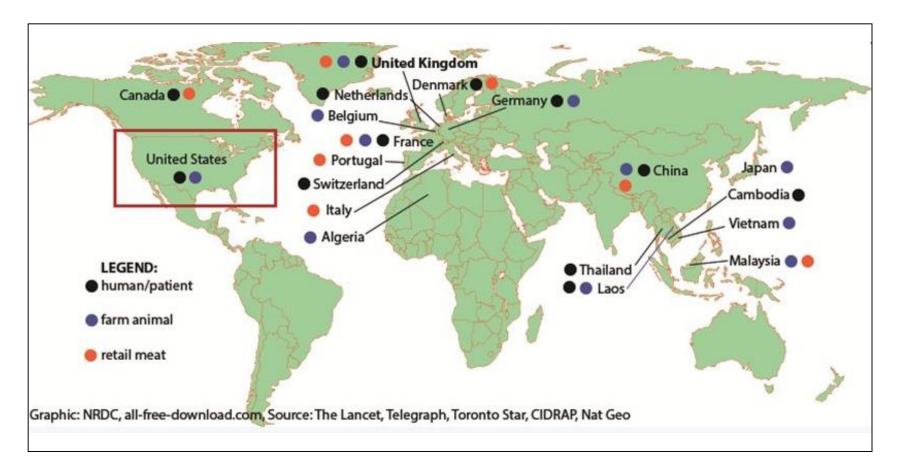
Chromosomal colistin resistance



- Diverse mutations affecting LPS structure
- Enterobacteriaceae and other non-fermenters
- Also underlies much intrinsic COL-R (Serratia, Proteus, Morganella etc.)

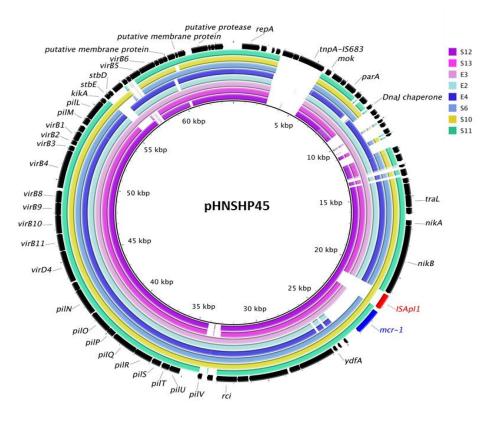
Olaitan et al. Front. Microbiol., 26 November 2014

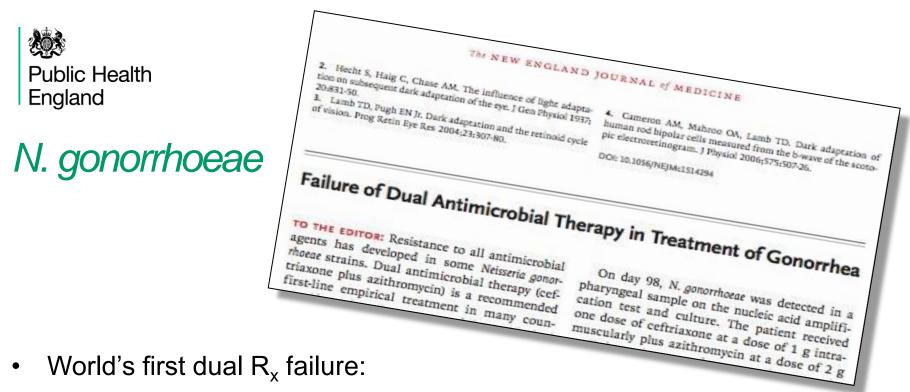
...and now plasmidic colistin resistance; mcr-1



35 RCPath training, 19th Oct 2016 © Crown Copyright

Liu et al. *Lancet Infect Dis.* 2015 Nov 18. pii: S1473-3099(15)00424-7

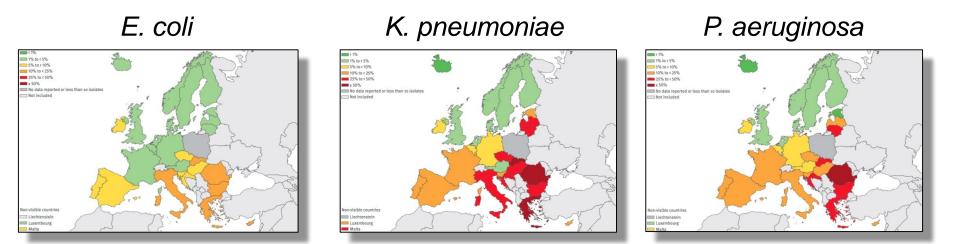

Global reports of mcr-1



mcr-1-positive bacteria from humans in the UK

- 1st phase: 24K genomes mined
 - 3 +ve E. coli
 - 12 +ve diverse Salmonella
- 2nd phase: c. 450 COL^R isolates screened (2014-2015)
 - Enterobacteriaceae + nonfermenters with acquired COL^R
 - 0 positives !!
- At present *mcr-1* is rare in the UK, even among COL-R isolates sent to the national reference laboratory.

- Single case, no onwards transmission
- MICs, CTR 0.25 mg/L; AZI 1 mg/L (both R by EUCAST)
- Outbreak of HL-AZI-R gonorrhoea
 - MICs, >256 mg/L (not a formal criterion)



WGS-based genotypic antibiograms

- EUCAST Subcommittee on the role of whole genome sequencing (WGS) in antimicrobial susceptibility testing of bacteria
 - Chair: Neil Woodford, London UK; report to be published in early 2017
- could 'soon' replace much AST for surveillance purposes
 - low impact of the low error rate
- could 'soon' reduce need for AST in *reference* laboratories unless
 - to guide treatment
 - for agents with poorest genotypic/phenotypic concordance
 - comparative in-vitro activity of new agents

A future of pan-drug-resistant (PDR) Gram-negatives ?

- MDR increasingly seen in BSI across Europe
- PDR also a reality, but low numbers in most countries
- MBL + ESBL (all beta-lactams) + 16S RMTase (aminoglycosides)
- + resistance to colistin + upregulated efflux