Standards and datasets for reporting cancers

Dataset for histopathological reporting of uveal melanoma

December 2017

Authors: Dr Hardeep Singh Mudhar, Royal Hallamshire Hospital, Sheffield
Professor Sarah E Coupland, Royal Liverpool University Hospital

<table>
<thead>
<tr>
<th>Unique document number</th>
<th>G056</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document name</td>
<td>Dataset for histopathological reporting of uveal melanoma</td>
</tr>
<tr>
<td>Version number</td>
<td>4</td>
</tr>
<tr>
<td>Produced by</td>
<td>Dr Hardeep Singh Mudhar, National Specialist Ophthalmic Pathology Service, Department of Histopathology, Royal Hallamshire Hospital, and Professor Sarah E Coupland, National Specialist Ophthalmic Pathology Service, Royal Liverpool University Hospital, on behalf of the College’s Cancer Services Working Group</td>
</tr>
<tr>
<td>Date active</td>
<td>December 2017 (to be implemented from 1 January 2018)</td>
</tr>
<tr>
<td>Date for review</td>
<td>December 2020</td>
</tr>
<tr>
<td>Comments</td>
<td>This document will replace the 3rd edition of Dataset for histopathological reporting of uveal melanoma published in 2014. In accordance with the College’s pre-publications policy, this document was on The Royal College of Pathologists’ website for consultation from 19 October to 16 November 2017. Responses and authors’ comments are available to view on request. Dr Lorna Williamson Director of Publishing and Engagement</td>
</tr>
</tbody>
</table>

The Royal College of Pathologists
Fourth Floor, 21 Prescot Street, London, E1 8BB
Tel: 020 7451 6700
Fax: 020 7451 6701
Web: www.rcpath.org

Registered charity in England and Wales, no. 261035
© 2017, The Royal College of Pathologists

This work is copyright. You may download, display, print and reproduce this document for your personal, non-commercial use. All other rights reserved. Requests and inquiries concerning reproduction and rights should be addressed to The Royal College of Pathologists at the above address. First published: 2017
Contents

Foreword ................................................................................................................................. 3
1 Introduction ............................................................................................................................ 4
2 Clinical information required on the specimen request form ............................................. 4
3 Preparation of specimens before dissection ........................................................................ 5
4 Specimen handling and block selection .............................................................................. 5
5 Core data items ................................................................................................................... 7
6 Non-core data items ............................................................................................................ 10
7 TNM pathological staging (8th edition UICC) ..................................................................... 10
8 SNOMED coding ................................................................................................................ 10
9 Reporting of small biopsy specimens ................................................................................ 10
10 Reporting of frozen sections .............................................................................................. 10
11 Specific aspects of individual tumours not covered elsewhere ........................................ 10
12 Criteria for audit of the dataset ........................................................................................ 11
13 References ......................................................................................................................... 12

Appendix A  TNM pathological staging of uveal melanoma (TNM 8th edition) ...................... 16
Appendix B  SNOMED T and M codes ................................................................................ 18
Appendix C  Reporting proforma for uveal melanoma .......................................................... 20
Appendix D  Reporting proforma for uveal melanoma in list format ..................................... 21
Appendix E  Summary table – Explanation of grades of evidence ........................................ 25
Appendix F  AGREE guideline monitoring sheet .................................................................... 26

NICE has accredited the process used by The Royal College of Pathologists to produce its Cancer Datasets and Tissue Pathways guidance. Accreditation is valid for 5 years from July 2012. More information on accreditation can be viewed at www.nice.org.uk/accreditation. For full details on our accreditation visit: www.nice.org.uk/accreditation.
Foreword

The cancer datasets published by The Royal College of Pathologists are guidelines that should assist pathologists in providing a high standard of care for patients. Guidelines are systematically developed statements to assist the decisions of practitioners and patients about appropriate healthcare for specific clinical circumstances and are based on the best available evidence at the time the dataset was prepared. This guideline has been developed to cover most common circumstances. However, we recognise that guidelines cannot anticipate every pathological specimen type and clinical scenario. Occasional variation from the practice recommended in this guideline may therefore be required to report a specimen in a way that maximises benefit to the patient.

Each dataset contains core data items that are mandated for inclusion in the Cancer Outcomes and Services Dataset (COSD – previously the National Cancer Data Set) in England. Core data items are items that are supported by robust published evidence and are required for cancer staging, optimal patient management and prognosis. Core data items meet the requirements of professional standards (as defined by the Information Standards Board for Health and Social Care [ISB]) and it is recommended that at least 90% of reports on cancer resections should record a full set of core data items. Other non-core data items are described. These may be included to provide a comprehensive report or to meet local clinical or research requirements. All data items should be clearly defined to allow the unambiguous recording of data.

The stakeholders consulted for this document were:

- British Association for Ophthalmic Pathology
- National Specialist Ophthalmic Pathology Service
- UK ocular oncologists working in Specialised Commissioned Ocular Oncology Centres in Liverpool, London, Sheffield and Glasgow.

The original literature search was conducted from PubMed. Some of the evidence is classed as Grade A, many of the papers as Grade B and some as Grade C according to the criteria published by Palmer and Nairn. The dataset is therefore evidence-based and robust.

No major organisational changes have been identified that would hinder the implementation of the dataset.

A formal revision cycle for all cancer datasets takes place on a 3-yearly basis. However, each year, the College will ask the author of the dataset, in conjunction with the relevant sub-specialty adviser to the College, to consider whether or not the dataset needs to be updated or revised. A full consultation process will be undertaken if major revisions are required, i.e. revisions to core data items (the only exception being changes to international tumour grading and staging schemes that have been approved by the Specialty Advisory Committee on Cellular Pathology and affiliated professional bodies; these changes will be implemented without further consultation). If minor revisions or changes to non-core data items are required, an abridged consultation process will be undertaken whereby a short note of the proposed changes will be placed on the College website for two weeks for members’ attention. If members do not object to the changes, the short notice of change will be incorporated into the dataset and the fully revised version (incorporating the changes) will replace the existing version on the College website.

The dataset has been reviewed by the Clinical Effectiveness Department, Working Group on Cancer Services and Lay Governance Group and placed on the College website for consultation with the membership from 19 October to 16 November 2017. All comments received from the Working Group and membership will be addressed by the author to the satisfaction of the Chair of
This dataset was developed without external funding to the writing group. The College requires the authors of datasets to provide a list of potential conflicts of interest; these are monitored by the Clinical Effectiveness department and are available on request. The authors have declared no conflicts of interest.

1 Introduction

Uveal melanoma (UM) affects the iris, ciliary body and choroid, and mainly occurs in white Caucasian patients. UM has a particular propensity for hepatic metastasis. Most cases undergo conservative management with radiotherapy, although some cases are enucleated. Recently, there has been much interest in the genetics of UM with regard to prognostic categorisation. Tumours with monosomy 3 and gains in 8q harbour the highest risk for metastasis.\textsuperscript{2–4} Tumours with monosomy 3 or gains in 8q are of intermediate risk, and tumours that are chromosomally balanced carry little risk for metastasis. Other molecular methods to prognosticate UM include gene expression profiling (GEP), which stratifies tumours into low-risk class 1A, intermediate-risk class 1B and high-risk class 2.\textsuperscript{5,6} It is advisable to have access to technology that enables a genetic prognosis to be given, with these data being considered together with the clinical and histological features of the tumour to best determine metastatic risk.

This proposal for the reporting of UM should be implemented for the following reasons:

1) to ascertain staging of the disease
2) to provide histological prognostic information
3) to provide accurate data for cancer registration
4) to potentially assist in selecting patients for future trials of adjuvant therapy
5) to provide data for clinical audit and effectiveness
6) to provide a database for research.

The synoptic proforma (Appendix C) is based on the \textit{TNM Classification of Malignant Tumours (\textit{6th edition})}\textsuperscript{7} from the Union for International Cancer Control (UICC) and the \textit{Cancer Staging Manual (\textit{6th edition})}\textsuperscript{8} from the American Joint Committee on Cancer (AJCC). Further guidelines on how to dissect ophthalmic specimens for the diagnosis of UM can be found in the references at the end of this document.\textsuperscript{9}

1.1 Target users and health benefits of this guideline

The target primary users of the dataset are trainee and consultant cellular pathologists and, on their behalf, the suppliers of IT products to laboratories. The secondary users are surgeons, specialist nurses, oncologists, endocrinologists and radiologists. It may also be of use to cancer registries.

2 Clinical information required on the specimen request form

The clinical information needed includes:

- age and sex of patient
- laterality of eye operated on
- clinical findings
• previous therapy to enucleated/exenterated eye
• any history of systemic malignancy
• previous biopsies.

3 Preparation of specimens before dissection

Five types of specimens are likely to be received from patients with suspected UM, usually in 10% buffered formalin. These are: iridectomies, local resections of ciliary body/choroidal melanomas (with or without iris and trabecular meshwork), endoresections, enucleations and exenterations.

Enucleations usually require 24 hours of fixation in 10% buffered formalin and exenterations usually 48 hours.

Sectoral iridectomy and localised resection specimens are often attached to a piece of sponge before receipt. The sponge keeps the specimen relatively flat and assists sectioning and preservation of planes for interpretation. If not, the specimen can be flattened between two cassette sponges overnight.

Endoresections of intraocular tumours usually present as tiny fragments in a large volume of fluid in a vitrectomy discard container.

Occasionally, sutured tantalum metal marker rings are seen over the scleral surface, indicating previous proton beam therapy. These are safe to handle and need to be removed prior to taking blocks.

In some UK ocular oncology centres, the enucleation may be sent unfixed to the pathology laboratory enabling fresh tumour sampling, which should be undertaken only under the supervision of the eye pathologist. In others, it will have had a cap removed opposite the tumour or a sclerotomy flap immediately under the tumour; these indicate portals of entry to sample fresh tumour for molecular genetics analysis or research.

Exenteration specimens are rarely taken for UM and may be complete or limited. Complete exenteration comprises removal of the eyelids, the globe, optic nerve, extraocular muscles, orbital fat and periosteum. For orientation purposes, the lashes of the upper lid are longer than those of the lower lid and the upper lid possesses a fold; the medial canthus possesses a caruncle and punctae.

4 Specimen handling and block selection

4.1 Macroscopic description

4.1.1 Iridectomy
The overall dimensions of the specimen and tumour are recorded. Painting the circumferential margins may facilitate orientation during microscopy.

4.1.2 Local resection
The specimen and tumour dimensions are recorded. The circumferential margins may be painted to facilitate measurement to the nearest margin at histology.

4.1.3 Endoresections
The total volume of fluid is estimated, along with a description of the floating tissue fragments.
4.1.4 Enucleation

Enucleation specimens often have the following measurements made:

- antero-posterior globe diameter (normal 22–23 mm)
- horizontal globe diameter (normal 22–23 mm)
- vertical globe diameter (normal 22–23 mm).

The vortex veins are identified as they pass obliquely through the scleral canals.

If the globe does not have a sampling sclerotomy to disclose the location of the tumour, the globe should be transilluminated with a bright light source (fibre optic). Any shadows are noted in terms of location and size, and may be outlined on the scleral surface by ink. The shadow usually corresponds to the location of the intraocular tumour. Any gross extraocular spread of tumour is noted.

After sampling the vortex veins and optic nerve margin, the eyeball is usually sliced in the antero-posterior plane. The plane of section is dependent on the findings of external examination and transillumination. This will determine whether the initial slice will be horizontal, vertical or oblique. The aim is to end up with a central antero-posterior segment that includes the pupil, optic nerve and the main central bulk of the tumour.

The following observations are recorded after slicing the globe:

- which uveal compartment is involved (iris/ciliary body/choroid)
- tumour height and base size
- evidence of extraocular invasion
- growth pattern: focal solid mass, diffuse, ring. With small tumours, it is sometimes better to determine the growth pattern histologically (5.2.1)
- which intraocular structures are involved by the tumour. With small tumours, it is often better to determine this histologically (5.1.1)
- some authorities measure the location of the tumour from the ora serrata or optic disc edge.

4.1.5 Exenteration

Exenterations are performed in some cases of gross extraocular UM extension. The following measurements are usually taken: maximum antero-posterior, horizontal and vertical. Any relevant external features are described. The external soft tissue margins should be painted in suitable dye for margin assessment and orientation purposes. The specimen is usually ‘bread-sliced’ from side to side and the intraocular contents, along with any extraocular lesions, described as for an enucleation.

4.2 Block taking

4.2.1 Iridectomy specimens

The following blocks are taken:

- main tumour with nearest margin
- all circumferential margins sampled separately if possible.

4.2.2 Local resection of ciliary body and choroid

The following blocks are taken:

- main tumour with nearest margin
4.2.3 Endoresections
For endoresections, the fluid is spun down and the specimen handled as a cell block.

4.2.4 Enucleation specimens
The following blocks are taken:
- optic nerve margin
- vortex veins
- main tumour block with pupil and optic nerve
- calotte/cap blocks if necessary.

The optic nerve margin and vortex veins are sampled before slicing into the globe, to prevent contamination of these margins by tumour. A section of the optic nerve is taken, usually 3–4 mm behind its junction with the sclera; leaving a stump facilitates microtomy. The vortex veins are usually located 5–9 mm from the optic nerve, at 2, 5, 7 and 10 o’clock. However, there can be considerable variation in the number and locations of the veins. The vortex veins are cut transversely across, at the point where they exit the scleral canals. If a length of vortex vein is not demonstrable, some advocate making two parallel cuts into the scleral canal to, in effect, de-roof it and remove the vortex vein from the canal.

Vortex veins should be embedded longitudinally to maximise the chance of detecting intravascular UM. Vortex veins can be placed into one cassette, or if one particular vortex vein is thought to contain tumour, this could be submitted in a separate cassette.

4.2.5 Exenteration specimens
For exenteration specimens, similar blocks to the above are taken (except that it will be difficult to obtain a vortex vein sample owing to the presence of orbital soft tissue) and include:
- optic nerve resection margin
- tumour with the nearest orbital soft tissue and or cutaneous margins.

5 Core data items

5.1 Macroscopic data

5.1.1 Site of tumour
Iris melanomas are associated with a much lower mortality compared to their ciliary and choroidal counterparts, with mortality rates ten-times lower than those for melanomas of other uveal sites. Ciliary body melanomas behave comparatively worse than iris and choroid melanomas.

[Level of evidence – B.]

5.1.2 Size of tumour
Tumour size (scleral basal diameter and maximum thickness) is an important prognostic factor for ciliary body and choroidal melanomas. The 5-year mortality rates are 16%, 32% and 53% for ‘small’, ‘medium’ and ‘large’ tumours, respectively. The Collaborative Ocular Melanoma Study (COMS) has defined the following size classification based on clinical measurements:
• small tumours: smaller than medium or large tumours defined below
• medium tumours: \( \geq 2.5 \text{ mm and } \leq 10 \text{ mm in maximum thickness, and } \leq 16 \text{ mm in basal diameter} \)
• large tumours: >10 mm in height, or >2 mm in maximum thickness and >16 mm in basal diameter, or >8 mm in maximum thickness with optic nerve involvement.

The UICC/AJCC classification of posterior UM (tumour size category) is predictive of prognosis.\(^7,8\) It does not use the above COMS classification of tumours, rather the 7\(^{th}\) UICC/AJCC TNM staging of UM designed a system on the basis of >3,300 tumours. The reader is referred to the appropriate texts\(^7,8,15\) and Appendix A.

The most accurate tumour measurements are usually made pre-operatively by ultrasound. If the melanoma has been sampled by the surgeon after the enucleation, one can only record the size of the residual mass.

[Level of evidence – B.]

5.1.3 Extraocular extension
Extraocular extension carries a worse outcome compared to those melanomas confined to the eye\(^13,23–28\) and is independently associated with a higher metastatic risk. This can occur directly through the scleral collagen, perineurally, perivascularly or intravascularly into the emissary, vortex vein\(^27\) or aqueous blood vessels.

The TNM Classification of Malignant Tumours (8\(^{th}\) edition)\(^7\) from the UICC and the Cancer Staging Manual (8\(^{th}\) edition)\(^8\) from the AJCC further subclassifies the size of the extraocular component as \( \leq 5 \text{ mm or >5 mm} \).

[Level of evidence – B.]

5.2 Microscopic data

5.2.1 Growth pattern of tumour
State whether the tumour is a focal solid mass, diffuse or of ring type.

Diffuse UM is defined as a tumour thickness of 20% or less than the greatest basal dimension.\(^29\) It grows along the choroidal plane with little focal elevation. Ring melanoma affects the anterior chamber angle and grows circumferentially along the trabecular meshwork and adjacent anterior chamber angle structures. Ring and diffuse patterns are associated with a worse prognosis and higher metastatic rate compared to a focal solid mass.\(^30–32\)

[Level of evidence – B.]

5.2.2 Cell types present
The modified Callender classification is used for determining cell type. This has prognostic significance for tumours of the choroid and ciliary body but not for the iris.\(^32–35\) State whether the tumour is spindle, epithelioid or mixed. Spindle A cells exhibit a slender oval nucleus, with a characteristic longitudinal nuclear groove, fine chromatin, an indistinct nucleolus and indistinct cytoplasmic borders. Spindle B cells show a plumper open nucleus, coarse chromatin and a distinct eosinophilic nucleolus, with indistinct cytoplasmic borders. Epithelioid cells are polygonal, exhibit marked nuclear pleomorphism, irregular nuclear contours, with coarse clumped chromatin, eosinophilic prominent nucleoli but with a distinct cytoplasmic border. There is no difference in prognosis between a spindle A or B cell\(^35\) and therefore calling a melanoma ‘spindle’ type (not otherwise specified) is acceptable. Spindle
cell melanoma has a comparatively better outcome, compared with mixed and epithelioid melanomas. The prognosis worsens with an increase in epithelioid cell content.\textsuperscript{32–35}

The AJCC has defined the histopathological tumour types with respect to cell types as follows:\textsuperscript{6}

\begin{itemize}
\item spindle cell melanoma (>90% spindle cells)
\item mixed cell melanoma (>10% epithelioid cells and <90% spindle cells)
\item epithelioid cell melanoma (>90% epithelioid).
\end{itemize}

It is recommended that the proportion of epithelioid cells is estimated in mixed cell melanomas, owing to the large size of this group, and that the dominant cell type is noted in the report.

\textit{[Level of evidence – B.]}

5.2.3 Extraocular invasion

Quite often, microscopic extraocular invasion is detected when it was not seen at gross examination.

Extraocular extension carries a worse outcome compared to those melanomas confined to the eye.\textsuperscript{13,23–28} This can occur directly through the scleral collagen, perineurally, perivascularly or intravascularly into the emissary, vortex vein\textsuperscript{28} or aqueous blood vessels.

The \textit{TNM Classification of Malignant Tumours (8\textsuperscript{th} edition)}\textsuperscript{7} from the UICC and the \textit{Cancer Staging Manual (8\textsuperscript{th} edition)}\textsuperscript{8} from the AJCC further subclassifies the size of the extraocular component as \(\leq 5\) mm or >5 mm.

Extraocular vortex vein invasion is associated with a choroidal location, large tumour size and adverse genetic tumour signatures.\textsuperscript{26}

\textit{[Level of evidence – B.]}

5.2.4 Mitotic count\textsuperscript{36–38}

This is independently associated with metastatic risk, with higher counts associated with shorter survival. A total of 40 high power fields are counted with each field having an area of 0.15–0.19 mm\(^2\) (recommended field size is 0.152 mm\(^2\)).

\textit{[Level of evidence – C.]}

5.2.5 Extracellular matrix patterns

On the largest tumour face, a periodic acid-Schiff (PAS) stain can be carried out, without counter stain, to assess the tumour extracellular matrix patterns.

Nine morphologic patterns of extracellular matrix deposition have been defined for ciliary body or choroidal melanomas.\textsuperscript{39,40} Most tumours have a heterogeneous PAS distribution. The presence of extracellular ‘closed loops’ and networks (a network is defined as at least three back-to-back closed loops) is a feature strongly associated with death from metastatic disease.\textsuperscript{40–42}

\textit{[Level of evidence – B.]}

\textsuperscript{CEff 191217 9 V1}
6 Non-core data items

6.1 Macroscopic data
Items include:
• size of specimen

6.2 Microscopic data
Items include:
• tumour necrosis\textsuperscript{43}
• presence of melanin pigmentation\textsuperscript{19}
• degree of lymphocytic infiltration\textsuperscript{44,45}
• breach of Bruch’s membrane\textsuperscript{46}
• optic nerve extension.\textsuperscript{47}

7 TNM pathological staging (\textit{8th} edition UICC)\textsuperscript{7}

The recommendation is to use the \textit{TNM Classification of Malignant Tumours (8th edition)} from the UICC (see Appendix A).

8 SNOMED coding
See Appendix B.

9 Reporting of small biopsy specimens

In specialist ocular oncology centres, aspiration cytology (iris, ciliary body and choroid – the latter via a trans-vitreous approach) and open-flap biopsies are usually undertaken to distinguish between a UM, metastasis or benign neoplasm, prior to treatment. Aspiration cytology specimens are handled as cytospins and cell blocks. These preparations often yield enough material for immunohistochemistry and molecular prognosis. The iris and choroid are amenable to direct biopsy. These specimens are small and require careful handling to ensure ancillary investigations such as immunohistochemistry and molecular studies are possible, to secure a firm diagnosis.

10 Reporting of frozen sections
Not applicable.

11 Specific aspects of individual tumours not covered elsewhere

11.1 Molecular testing\textsuperscript{48–52}

Loss of chromosome 1p, monosomy 3, gain of 6p, loss of 6q, loss of 8p and gain of 8q have been linked statistically to metastatic death in UM. Monosomy 3 is at present the most significant. There are a variety of molecular and cytogenetic prognostic tests available (karyotyping, fluorescence in situ hybridisation, comparative genomic hybridisation,
microsatellite analysis, single-nucleotide polymorphism, multiplex ligation-dependent probe amplification, UM GEP). While this dataset relates to histopathological prognostic factors, it is highly recommended that pathologists reporting ciliary body and choroidal melanomas have access to some form of molecular or cytogenetic testing and, as a minimum, communicate the status of chromosome 3.

11.2 Iris cytology\textsuperscript{53,54}

Care is required when interpreting surface aspiration cytology specimens of suspected melanoma of the iris. It is now thought that aqueous humour induces iris melanoma cells to adopt low-grade cytology, which resemble naevus cells. Finding such cells in an aspiration specimen does not exclude melanoma. In such circumstances, a formal iris biopsy is required to sample the deeper stromal melanoma cells. These deeper cells are usually more atypical and permit a secure diagnosis of melanoma to be made. The biopsy also allows for a better assessment of the architecture of the iris, and the location of any atypical cells, increasing the likelihood of achieving a definite diagnosis and differentiation between a benign or malignant melanocytic lesion.

12 Criteria for audit of the dataset

The following standards are suggested:

• completeness of histopathology core items recorded
  
  – standard: reports should contain 100\% of the core items.

While no standards exist for the following, it is suggested that it would be beneficial to monitor:

• proportion of cases in each ‘T’ category (pTNM) and prognosis
• proportions of spindle, mixed and epithelioid tumours.
13 References


54 Canovas D, Rennie IG, Nichols CE, Sisley K. Local environmental influences on uveal melanoma: vitreous humor promotes uveal melanoma invasion, whereas the aqueous can be inhibitory. *Cancer* 2008;112:1787–1794.
Appendix A  TNM pathological staging of uveal melanoma (TNM 8th edition)\(^7\)

Anatomical sites

<table>
<thead>
<tr>
<th>Iris</th>
<th>C69.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciliary body</td>
<td>C69.4</td>
</tr>
<tr>
<td>Choroid</td>
<td>C69.3</td>
</tr>
</tbody>
</table>

\textbf{pT – Primary tumour}

\textbf{pTX}  Primary tumour cannot be assessed
\textbf{pT0}  No evidence of primary tumour

\textbf{Iris}

(NB: Iris melanomas originate from, and are predominantly located in, this region of the uvea. If less than half of the tumour volume is located within the iris, the tumour may have originated in the ciliary body and consideration should be given to classifying it accordingly.)

\textbf{pT1: Tumour limited to the iris}

\textbf{pT1a}  Not more than 3 clock hours in size
\textbf{pT1b}  More than 3 clock hours in size
\textbf{pT1c}  With secondary glaucoma

\textbf{pT2: Tumour confluent with or extending into the ciliary body, choroid or both}

\textbf{pT2a}  Tumour confluent with or extending into the ciliary body without secondary glaucoma
\textbf{pT2b}  Tumour confluent with or extending into the choroid without secondary glaucoma
\textbf{pT2c}  Tumour confluent with or extending into the ciliary body and/or choroid with secondary glaucoma

\textbf{pT3: Tumour confluent with or extending into the ciliary body, choroid or both, with scleral extension}

\textbf{pT4: Tumour with extrasceral extension}

\textbf{pT4a}  ≤5 mm in diameter
\textbf{pT4b}  >5 mm in diameter

\textbf{Ciliary body and choroid}

Primary ciliary body and choroidal melanomas are classified according to the four tumour size categories below:

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>4</th>
<th>4</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>&gt;15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.1–15.0</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>9.1–12.0</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.1–9.0</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3.1–6.0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>≤3.0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>&lt;3.0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Largest basal diameter of tumour (mm)
pT1  Tumour size category 1
  pT1a  Without ciliary body involvement and extraocular extension
  pT1b  Without ciliary body involvement
  pT1c  Without ciliary body involvement but with extraocular extension ≤5 mm in diameter
  pT1d  With ciliary body involvement and extraocular extension ≤5 mm in diameter

pT2  Tumour size category 2
  pT2a  Without ciliary body involvement and extraocular extension
  pT2b  With ciliary body involvement
  pT2c  Without ciliary body involvement
  pT2d  With ciliary body involvement and extraocular extension ≤5 mm in diameter

pT3  Tumour size category 3
  T3a  Without ciliary body involvement and extraocular extension
  T3b  With ciliary body involvement
  T3c  Without ciliary body involvement but with extraocular extension ≤5 mm in diameter
  T3d  With ciliary body involvement and extraocular extension ≤5 mm in diameter

pT4  Tumour size category 4
  pT4a  Without ciliary body involvement and extraocular extension
  pT4b  With ciliary body involvement
  pT4c  Without ciliary body involvement but with extraocular extension ≤5 mm in diameter
  pT4d  With ciliary body involvement and extraocular extension ≤5 mm in diameter
  pT4e  Any tumour size category with extraocular extension ≥5 mm in diameter

Note: When histopathological measurements are recorded after fixation, tumour diameter and thickness may be underestimated because of tissue shrinkage.

pN – Regional lymph nodes

The regional lymph nodes are the preauricular, submandibular and cervical nodes.

pNX  Regional lymph nodes cannot be assessed
pN0  No regional lymph node metastasis
pN1  Regional lymph node metastasis

pM – Distant metastasis

pM0  No distant metastasis
pM1  Distant metastasis
pM1a  Largest diameter of the largest metastasis ≤3 cm
pM1b  Largest diameter of the largest metastasis 3.1–8.0 cm
pM1c  Largest diameter of the largest metastasis >8 cm
Appendix B  SNOICD T and M codes

Sites and subsites for description and their associated SNOICD 'T' codes

<table>
<thead>
<tr>
<th>Topographical codes</th>
<th>SNOICD</th>
<th>SNOICD-CT terminology</th>
<th>SNOICD - CT code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye</td>
<td>TXX000 (SNOICD 2) TAA000 (SNOICD 3/RT)</td>
<td>Structure of eye proper (body structure)</td>
<td>81745001</td>
</tr>
<tr>
<td>Both eyes</td>
<td>TXX180 (SNOICD 2) TAA180 (SNOICD 3/RT)</td>
<td>Structure of both eyes (body structure)</td>
<td>40638003</td>
</tr>
<tr>
<td>Orbit</td>
<td>TY0480 (SNOICD 2) TD1480 (SNOICD 3) T-D14AD (SNOICD RT)</td>
<td>Entire orbital region (body structure)</td>
<td>39607008</td>
</tr>
<tr>
<td>Choroid</td>
<td>T-XX310 (SNOICD 2) T-AA310 (SNOICD 3/RT)</td>
<td>Choroidal structure (body structure)</td>
<td>68703001</td>
</tr>
<tr>
<td>Ciliary body</td>
<td>T-XX400 (SNOICD 2) T-AA400 (SNOICD 3/RT)</td>
<td>Ciliary body structure (body structure)</td>
<td>29534007</td>
</tr>
<tr>
<td>Iris</td>
<td>T-XX280 (SNOICD 2) T-AA500 (SNOICD 3/RT)</td>
<td>Iris structure (body structure)</td>
<td>41296002</td>
</tr>
<tr>
<td>Uvea</td>
<td>T-XX570 (SNOICD 2) T-AA570 (SNOICD 3/RT)</td>
<td>Uveal tract structure (body structure)</td>
<td>74862005</td>
</tr>
</tbody>
</table>

Common SNOICD 'M' codes used in uveal melanoma

<table>
<thead>
<tr>
<th>Morphological codes</th>
<th>SNOICD</th>
<th>SNOICD-CT terminology</th>
<th>SNOICD - CT code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma</td>
<td>M-87203</td>
<td>Malignant melanoma, no International Classification of Diseases for Oncology subtype (morphologic abnormality)</td>
<td>2092003</td>
</tr>
<tr>
<td>Epithelioid melanoma</td>
<td>M-87713</td>
<td>Epithelioid cell melanoma (morphologic abnormality)</td>
<td>37138001</td>
</tr>
<tr>
<td>Spindle cell melanoma</td>
<td>M-87723</td>
<td>Spindle cell melanoma (morphologic abnormality)</td>
<td>68827007</td>
</tr>
<tr>
<td>Mixed spindle cell and epithelioid melanoma</td>
<td>M-87703</td>
<td>Mixed epithelioid and spindle cell melanoma (morphologic abnormality)</td>
<td>50813003</td>
</tr>
</tbody>
</table>
### Morphological codes (continued)

<table>
<thead>
<tr>
<th>Disease Description</th>
<th>SNOED</th>
<th>SNOMED-CT terminology</th>
<th>SNOMED-CT code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma in melanosis</td>
<td>M-87413</td>
<td>Malignant melanoma in precancerous melanosis (morphologic abnormality)</td>
<td>18450009</td>
</tr>
<tr>
<td>Naevus</td>
<td>M-87200</td>
<td>Pigmented nevus, no International Classification of Diseases for Oncology subtype (morphologic abnormality)</td>
<td>21119008</td>
</tr>
<tr>
<td>Melanocytoma</td>
<td>M-87260</td>
<td>Magnocellular nevus (morphologic abnormality)</td>
<td>26325004</td>
</tr>
<tr>
<td>Metastatic melanoma</td>
<td>M-87206</td>
<td>Malignant melanoma, metastatic (morphologic abnormality)</td>
<td>372158004</td>
</tr>
</tbody>
</table>

### SNOMED P (Procedure) codes

These are used in SNOMED 2 and SNOMED 3 to distinguish biopsies, partial resections and radical resections to indicate the nature of the procedure.

Local P codes should be recorded. At present, P codes vary according to the SNOMED system in use in different institutions.
Appendix C Reporting proforma for uveal melanoma

Surname: ........................................... Forenames: ..................................... Date of birth: ......................... Sex: M / F
Hospital: ........................................ Hospital no: ............................. NHS/number: ...........................................
Date specimen taken: ................ Date of receipt: ...................... Date of reporting: ..........................
Report no: ................................. Pathologist: ............................ Surgeon: .................................

MACROSCOPIC DESCRIPTION

Specimen type:  
- Iridectomy □
- Local resection of ciliary body/choroid □
- Endoresection □
- Enucleation □
- Orbital exenteration □

Laterality:  
- Right □
- Left □

Uveal compartments involved:  
- Iris □
- Ciliary body □
- Choroid □
- Cannot be assessed □

Extraocular tumour extension  
- Present □
- Not identified □

If extraocular tumour extension present:  
- Extraocular extension, maximum tumour diameter  ≤5 mm □ >5 mm □Cannot be assessed □

Intraocular tumour size (for choroidal and ciliary body tumours only):  

- Largest basal diameter (mm):  
  - ≤3.0 □  3.1–6.0 □  6.1–9.0 □  9.1–12.0 □  12.1–15.0 □  15.1–18.0 □ >18 □

- Maximum height (mm):  
  - ≤3.0 □  3.1–6.0 □  6.1–9.0 □  9.1–12.0 □  12.1–15.0 □ >15 □

MICROSCOPIC DESCRIPTION

Melanoma present  
- Yes □
- No □

Uveal structures involved:  
- Iris □
- Ciliary body □
- Choroid □
- Cannot be assessed □

Tumour growth pattern:  
- Focal solid mass □
- Ring □
- Diffuse □

Overall histological tumour type designation by cell type:  
- Spindle cell melanoma (>90% spindle cells) □
- Mixed cell melanoma (>10% epithelioid cells and <90% spindle cells) □
- Epithelioid cell melanoma (>90% epithelioid cells) □
- Other □ Please specify ..............................

Microscopic extraocular extension: Present ≤5 mm □ Present >5 mm □ Not identified □

Mitotic count (In 40 high power fields; each field being 0.15–0.19 mm², ideally 0.152 mm²) ..........................

Closed loops and/or networks matrix patterns (for ciliary body and uveal melanoma only)  
- Present □
- Not identified □

Comments

Pathological staging  
- pT □
- pN □
- pM □ (UICC TNM 8th edition)

SNOMED codes  

Signature.............................. Date..............................
### Appendix D  Reporting proforma for uveal melanoma in list format

<table>
<thead>
<tr>
<th>Element name</th>
<th>Values</th>
<th>Implementation notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen type</td>
<td>Single selection value list:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Iridectomy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Local resection of ciliary body/choroid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Endoresection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enucleation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Orbital exenteration</td>
<td></td>
</tr>
<tr>
<td>Laterality</td>
<td>Single selection value list:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Left</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Right</td>
<td></td>
</tr>
<tr>
<td>Macroscopic uveal structures involved</td>
<td>Multi select value list (choose all that apply):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Iris</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ciliary body</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Choroid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cannot be assessed</td>
<td></td>
</tr>
<tr>
<td>Macroscopic extraocular tumour extension</td>
<td>Single selection value list:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Present</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Not identified</td>
<td></td>
</tr>
<tr>
<td>Macroscopic extraocular tumour extension maximum tumour diameter</td>
<td>Single selection value list:</td>
<td>Not applicable if macroscopic extraocular tumour extension is not identified.</td>
</tr>
<tr>
<td></td>
<td>• ≤5 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• &gt;5 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cannot be assessed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Not applicable</td>
<td></td>
</tr>
<tr>
<td>Largest basal diameter</td>
<td>Single selection value list:</td>
<td>Not applicable if uveal compartments involved does not include ciliary body or choroid.</td>
</tr>
<tr>
<td></td>
<td>• ≤3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3.1–6.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 6.1–9.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 9.1–12.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 12.1–15.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 15.1–18.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• &gt;18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Not applicable</td>
<td></td>
</tr>
</tbody>
</table>
| **Maximum height** | Single selection value list:  
• ≤3.0  
• 3.1–6.0  
• 6.1–9.0  
• 9.1–12.0  
• 12.1–15.0  
• >15  
• Not applicable | Not applicable if uveal compartments involved does not include ciliary body or choroid. |
|---------------------|-------------------------------------------------|--------------------------------------------------|
| **Melanoma present** | Single selection value list:  
• Yes  
• No | |
| **Microscopic uveal structures involved** | Multi select value list (choose all that apply):  
• Iris  
• Ciliary body  
• Choroid  
• Cannot be assessed | |
| **Tumour growth pattern** | Single selection value list:  
• Focal solid mass  
• Ring  
• Diffuse | |
| **Histological tumour type** | Single selection value list:  
• Spindle cell melanoma  
• Mixed cell melanoma  
• Epithelioid cell melanoma  
• Other | |
| **Histological tumour type, other specify** | • Free text | Only applicable if ‘Histological tumour type, other’ selected. |
| **Microscopic extraocular tumour extension** | Single selection value list:  
• Present ≤ 5 mm  
• Present >5 mm  
• Not identified | |
| **Mitotic count** | Number | |
| **Closed loops and/or networks matrix patterns** | Single selection value list:  
• Present  
• Not identified  
• Not applicable | Not applicable if uveal compartments involved does not include ciliary body or choroid |
<table>
<thead>
<tr>
<th>UICC TNM version 8 pT stage</th>
<th>Single selection value list:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• pTX</td>
<td>• ypTX</td>
</tr>
<tr>
<td>• pT0</td>
<td>• ypT0</td>
</tr>
<tr>
<td>• pT1a</td>
<td>• ypT1a</td>
</tr>
<tr>
<td>• pT1b</td>
<td>• ypT1b</td>
</tr>
<tr>
<td>• pT1c</td>
<td>• ypT1c</td>
</tr>
<tr>
<td>• pT1d</td>
<td>• ypT1d</td>
</tr>
<tr>
<td>• pT2a</td>
<td>• ypT2a</td>
</tr>
<tr>
<td>• pT2b</td>
<td>• ypT2b</td>
</tr>
<tr>
<td>• pT2c</td>
<td>• ypT2c</td>
</tr>
<tr>
<td>• pT2d</td>
<td>• ypT2d</td>
</tr>
<tr>
<td>• pT3a</td>
<td>• ypT3a</td>
</tr>
<tr>
<td>• pT3b</td>
<td>• ypT3b</td>
</tr>
<tr>
<td>• pT3c</td>
<td>• ypT3c</td>
</tr>
<tr>
<td>• pT3d</td>
<td>• ypT3d</td>
</tr>
<tr>
<td>• pT4a</td>
<td>• ypT4a</td>
</tr>
<tr>
<td>• pT4b</td>
<td>• ypT4b</td>
</tr>
<tr>
<td>• pT4c</td>
<td>• ypT4c</td>
</tr>
<tr>
<td>• pT4d</td>
<td>• ypT4d</td>
</tr>
<tr>
<td>• pT4e</td>
<td>• ypT4e</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| UICC TNM version 8 pN stage | Single selection value list:  
|                           | • pNX  
|                           | • pN0  
|                           | • pN1  
|                           | • ypNX  
|                           | • ypN0  
|                           | • ypN1 |
| UICC TNM version 8 pM stage | Single selection value list:  
|                           | • M0  
|                           | • pM1a  
|                           | • pM1b  
|                           | • pM1c |
| SNOMED Topography code | May have multiple codes. Look up from SNOMED tables. |
| SNOMED Morphology code | May have multiple codes. Look up from SNOMED tables. |
### Appendix E  Summary table – Explanation of grades of evidence

(modified from Palmer K et al. BMJ 2008;337:1832)

<table>
<thead>
<tr>
<th>Grade (level) of evidence</th>
<th>Nature of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade A</td>
<td>At least one high-quality meta-analysis, systematic review of randomised controlled trials or a randomised controlled trial with a very low risk of bias and directly attributable to the target cancer type or A body of evidence demonstrating consistency of results and comprising mainly well-conducted meta-analyses, systematic reviews of randomised controlled trials or randomised controlled trials with a low risk of bias, directly applicable to the target cancer type.</td>
</tr>
<tr>
<td>Grade B</td>
<td>A body of evidence demonstrating consistency of results and comprising mainly high-quality systematic reviews of case-control or cohort studies and high-quality case-control or cohort studies with a very low risk of confounding or bias and a high probability that the relation is causal and which are directly applicable to the target cancer type or Extrapolation evidence from studies described in A.</td>
</tr>
<tr>
<td>Grade C</td>
<td>A body of evidence demonstrating consistency of results and including well-conducted case-control or cohort studies and high-quality case-control or cohort studies with a low risk of confounding or bias and a moderate probability that the relation is causal and which are directly applicable to the target cancer type or Extrapolation evidence from studies described in B.</td>
</tr>
<tr>
<td>Grade D</td>
<td>Non-analytic studies such as case reports, case series or expert opinion or Extrapolation evidence from studies described in C.</td>
</tr>
<tr>
<td>Good practice point (GPP)</td>
<td>Recommended best practice based on the clinical experience of the authors of the writing group.</td>
</tr>
</tbody>
</table>
Appendix F AGREE guideline monitoring sheet

The cancer datasets of The Royal College of Pathologists comply with the AGREE II standards for good quality clinical guidelines. The sections of this dataset that indicate compliance with each of the AGREE II standards are indicated in the table.

<table>
<thead>
<tr>
<th>AGREE standard</th>
<th>Section of guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Scope and purpose</strong></td>
<td></td>
</tr>
<tr>
<td>1 The overall objective(s) of the guideline is (are) specifically described</td>
<td>Foreword, 1</td>
</tr>
<tr>
<td>2 The health question(s) covered by the guideline is (are) specifically described</td>
<td>Foreword, 1</td>
</tr>
<tr>
<td>3 The population (patients, public, etc.) to whom the guideline is meant to apply is specifically described</td>
<td>Foreword, 1</td>
</tr>
<tr>
<td><strong>Stakeholder involvement</strong></td>
<td></td>
</tr>
<tr>
<td>4 The guideline development group includes individuals from all the relevant professional groups</td>
<td>Foreword</td>
</tr>
<tr>
<td>5 The views and preferences of the target population (patients, public, etc.) have been sought</td>
<td>Foreword</td>
</tr>
<tr>
<td>6 The target users of the guideline are clearly defined</td>
<td>1</td>
</tr>
<tr>
<td><strong>Rigour of development</strong></td>
<td></td>
</tr>
<tr>
<td>7 Systematic methods were used to search for evidence</td>
<td>Foreword</td>
</tr>
<tr>
<td>8 The criteria for selecting the evidence are clearly described</td>
<td>Foreword</td>
</tr>
<tr>
<td>9 The strengths and limitations of the body of evidence are clearly described</td>
<td>Foreword</td>
</tr>
<tr>
<td>10 The methods for formulating the recommendations are clearly described</td>
<td>Foreword</td>
</tr>
<tr>
<td>11 The health benefits, side effects and risks have been considered in formulating the recommendations</td>
<td>Foreword, 1</td>
</tr>
<tr>
<td>12 There is an explicit link between the recommendations and the supporting evidence</td>
<td>5–6, 11</td>
</tr>
<tr>
<td>13 The guideline has been externally reviewed by experts prior to its publication</td>
<td>Foreword</td>
</tr>
<tr>
<td>14 A procedure for updating the guideline is provided</td>
<td>Foreword</td>
</tr>
<tr>
<td><strong>Clarity of presentation</strong></td>
<td></td>
</tr>
<tr>
<td>15 The recommendations are specific and unambiguous</td>
<td>2–11</td>
</tr>
<tr>
<td>16 The different options for management of the condition or health issue are clearly presented</td>
<td>2–11</td>
</tr>
<tr>
<td>17 Key recommendations are easily identifiable</td>
<td>2–11</td>
</tr>
<tr>
<td><strong>Applicability</strong></td>
<td></td>
</tr>
<tr>
<td>18 The guideline describes facilitators and barriers to its application</td>
<td>Foreword</td>
</tr>
<tr>
<td>19 The guideline provides advice and/or tools on how the recommendations can be put into practice</td>
<td>Appendices A–D</td>
</tr>
<tr>
<td>20 The potential resource implications of applying the recommendations have been considered</td>
<td>Foreword</td>
</tr>
<tr>
<td>21 The guideline presents monitoring and/or auditing criteria</td>
<td>12</td>
</tr>
<tr>
<td><strong>Editorial independence</strong></td>
<td></td>
</tr>
<tr>
<td>22 The views of the funding body have not influenced the content of the guideline</td>
<td>Foreword</td>
</tr>
<tr>
<td>23 Competing interest of guideline development group members have been recorded and addressed</td>
<td>Foreword</td>
</tr>
</tbody>
</table>