

FRCPath Examination

Toxicology Speciality

Subspecialty Toxicological Pathology Part I, Paper II

Curriculum

Morphological Pathology

Specific Topics

Laboratory animals

- Knowledge of main laboratory animal species (rat, mouse, dog, non-human primate, minipig, rabbit, guinea pig, hamster)
- Comparative physiology, anatomy and histology of the different species and strains
- Gender and age differences in structure and function

Detailed understanding of organ systems

- Integument (skin)
- Neurological system (central and peripheral)
- Special senses (eye, ear and other sense organs)
- Endocrine organs (adrenal, pituitary, thyroid and parathyroid glands)
- Cardiovascular system (heart and blood vessels)
- Gastrointestinal tract and associated glands (liver, pancreas, salivary glands)
- Respiratory system (upper and lower tract)
- Urinary tract (kidney and urinary bladder)
- Male and female reproduction systems
- Lymphoid/haematopoietic systems (spleen, thymus, lymph nodes & bone marrow)
- Musculoskeletal system (muscle and bone)
- **Background spontaneous pathology** (congenital, inflammatory/vascular, infectious, degenerative, hyperplasia and neoplasia); how this may compromise interpretation of data
- Pathogenesis of disease processes (effecting physiology, anatomy and histology)
- Drug-induced pathology and mechanisms of toxicity (with examples of causative agents)
- **Exacerbation of disease processes** (how conditions of hypoxia, physical forces and infectious agents can cause and exacerbate chemically or biologically induced cell injury)
- **Perturbation of homeostatic functions** (by chemical induced disease processes)
- Relationship between tissue specific pathology and systemic disease (e.g. Hepatic damage and encephalopathy)
- Influence of experimental procedures on functional processes and structures
- Effects of environment (animal husbandry) on chemical induced toxicity

Interpretation of pathology data

- Interpretation of histopathology findings as either background, treatment-related (direct) or indirect (secondary to general perturbation in homeostasis, stress or ADA)
- Correlation of all study data: clinical signs, clinical pathology, PK, PD, macroscopic, microscopic data and anticipated biology/pharmacology of therapeutic agent at the individual animal level, within or across experimental groups and between studies
- Interpretation of histopathology data in context of all other study data

Laboratory animal science and veterinary intervention

- Animal source, quality, history of health status prior to study start
- Animal husbandry (optimal nutritional and environmental requirements)
- Animal welfare (3Rs)
- Animal clinical monitoring and veterinary interventions

• Infectious diseases, SPF and quarantine

Practical Pathology

Specific Topics
Post-mortem/necropsy
 Methods of humane euthanasia for each species
 Necropsy procedures (personal participation)
 Gross examination, description and recording of findings
 Tissue sampling for standard histological processing and other specialised assays
• Standard histological processing of tissues (fixation, paraffin embedding, H&E stain) for light
microscopy and more specialised processing of tissues (perfusion, resin embed) (e.g. EM)
 Effects of necropsy and processing of tissues on histopathological evaluation
Histopathological evaluation of tissues
 Application of light microscopy for histopathological assessment of tissues
Clear morphological description of histopathological findings with interpretation
 Competence with computerised pathology data capture systems
 Participation in pathology peer review and educational review schemes
Interpretation of histopathological findings
Differentiation of real findings from post-mortem, ante-mortem, morbid and agonal
changes
Identification of technical artefacts
 Identification of administration-related pathology
 Biological plausibility of treatment-related findings and interpretation
Regulations
GLP compliance (SOP)
 Standardised diagnostic terminology (STP/RITA)
Laboratory management

• Management of histopathology laboratory and QC

Clinical Pathology

Specific Topics

Clinical pathology

- Haematology, clinical chemistry, urine analysis, blood and bone marrow smears, lymph node imprints and cell smears
- Laboratory animal species (rat, mouse, dog, NHP, minipig, rabbit, guinea pig, hamster)
- Species, strain, gender and age differences

Detailed understanding of endpoints

- Background spontaneous changes (normal variation)
- Drug-induced changes and mechanisms of toxicity (with examples of causative agents)
- Exacerbation of disease processes
- Relationship between clinical pathology changes and organ systems

Practical application

- Handling and preservation of samples
- Haematology blood and bone marrow smears
- Manual and automated methods

Special molecular pathology techniques

Specific Topics

Specialised techniques

- Special stains
- Immunohistochemistry (IHC)
- Electron microscopy (EM): general overview of procedures, review and interpretation of micrographs
- In Situ Hybridisation (ISH)

Animal models

Specific Topics

Animal models of human diseases

- Precise morphological description and aetiology of human disease processes
- Animal models of human disease (relevance and limitations)