

MPN

Digital Pathology

- Digital Pathology in service delivery
- Mechanics of digitisation
- Utility and limitations
- Digital Pathology in research
- Tumour Parcellation and Quantification (TuPaQ)
- Histogenic Molecular Mapping (HMM)

What is Digital Pathology?

- Digital Pathology involves taking a digital image of a tissue section
- The image can then be used for diagnosis as an alternative to the microscope
- The image data can be mined in several of ways for computer aided diagnosis
- Getting a digital image involves several steps, each of which is a source of varation

Utility of Digital Pathology

- Images can be used for diagnostic work (FDA approved)
- Images can be used for instant second opinion
- Images can be used for accurate quantification
- Computer aided diagnosis may automate and facilitate tasks

Limitations of Digital Pathology

- Image acquisition can be problematic and needs QC
- Images are large and data management (compression / transmission / storage) are problematic
- Viewing environment needs to be optimised
- There is no cost case!

Image Analysis

- Digital images can be in interrogated in many ways to yield information which may facilitate or enhance diagnosis
- Deep learning methods are being used to mine data
- Recurrent themes are:
- Tumour segmentation for biomarkers
- Image registration for multiple biomarkers

MPN

	arcellation and Quantification (TuPaQ)		Tumour Percellation and Quantification (TuPaQ)		
Deressing (1) may it is a service in the service is a service is a service in the service is a service	And Anton Statistics Statistics Control Control Contr	An and a second se		boo server and a s	
Tansan 2004 May walth May walth Lanking was Different and Different and Different and	Assess there for the former former for the former former former for the former fo	Television State S	Image: State State Mean state State Image: State State Image: State State Image: State State Image: State State	a non	

- The best algorithm works in a supervised way
- It is not quite perfect so we are working improve tissue analysis by stain normalization
- A number of methods have been tried
- Next is biomarker quantification

Image pre-processing

Histogenic Molecular Mapping

- Histogenic molecular mapping (HMM) is a means of mapping multiple markers form IHC onto a single composite "map" of a tissue section
- It assumes that immediately adjacent sections are similar and objects can be mapped onto each other
- A panel of biomarkers can be used to then create a "map" of activated pathways

Histogenic Molecular Mapping

• HMM requires

.....

- Handling of large images
- Tissue registration
- Tissue segmentation
- Biomarker evaluation and quantification

MPN

TuPaQ and HMM

- Both should be available soon(!) as a standalone packages
- They should deal with images in all formats
- Pathways can then be mapped out
- Biomarker assessment should be accurate

Learning point: Digital Pathology

- Digital Pathology involves image acquisition, data compression and data display.
- Automated image analysis on digital images can improve certain tasks such as biomarker quantification.

MP

New Developments in the laboratory: Next Generation Sequencing

Next Generation Sequencing

- What is NGS?
- The sequencing process
- The NGS workflow (LSD)
- Utility and limitations

Principles of Sequencing

- Usual type of sequencing is called "Sanger sequencing"
- A pool of molecules is sequenced and the "net" sequence is captured
- Several sequencing chemistries are available with different sensitivities
- Low frequency alleles can however be lost in the background noise

MP

MP

Principles of Sequencing

- Sequencing is based on DNA replication
- Single DNA strands are used as template and bases are added to synthesis new strands
- Bases can be identified as they are added using radioactivity / fluorescence / pH etc.
- The sequence can be inferred from these signals

Sequencing reaction

- Libraries are converted to single stranded DNA
- Each molecule is immobilized and undergoes clonal amplification
- Sequencing is performed by synthesizing a new strand
- Nucleotide incorporation is detected by changes in fluorescence / pH / pyrophosphate

MP

Next Generation Sequencing

- NGS can be broken down into three simple steps:
- Library preparation
- Sequencing reaction
- Data assembly

LSD

- The library is your template which has been barcoded
- Libraries can be enriched for specific sequences
- Sequences can be aligned against a *reference sequence*
- Sequenced can be aligned without a reference sequence using overlaps – called de-novo assembly

MPN

Summary 1

- NGS technology allows massively parallel sequencing – each molecule is sequenced individually
- It depends on Watson-Crick base pairing
- Libraries are samples which have been fragmented and to which adapters have been added to allow sequencing
- Sequence assembly can be done using a reference sequence or *de-novo*

NGS assays

- All nucleic acids can be sequenced using NGS
- For DNA, assays include:
- Whole Genome Sequencing (WGS): everything (exons, introns, regulatory elements, structural elements)
- Whole Exome Sequencing (WES): this is just the coding regions of the genome (comprising approximately 2% of genome).

NGS assays

- Targeted sequencing: only certain selected regions of the genome
- For WES and targeted sequencing, the library needs to be enriched by hybridisation capture or PCR
- Each assay has a limited number of reactions – the more target sequence, the lower the sequencing depth

NGS assays

- For RNA, the assay is know as RNA-Seq
- It can be used for quantifying mRNA (i.e. expression profiling), miRNA, IncRNA and footprinting rRNA
- Specialist assays include:
- Methyl-Seq: used to identify methylated regions in the DNA
- ChIP-Seq: used to identify DNA-protein interactions (e.g. transcription factors)

Utility and limitations of NGS

- NGS can:
- Identify point mutations and indels
- Identify copy number changes
- Identify structural changes
- Precisely quantify gene expression

Utility and limitations of NGS

- In addition:
- WGS is good at identifying structural variants but not good at identifying single nucleotide variations / indels. Vice versa for targeted sequencing
- There are constraints from the small size of sequence such as missing large indels
- There are platform specific issues e.g. homopolymers

Utility and limitations of NGS

- Is there anything that NGS cannot do?
- Not much!
- However:
- There are template issues (previously discussed)
- There are interpretation issues (discussed later)

MP

- There are turnaround time issues

The digital pathology workflow

Summary 2

- NGS technology can interrogate all nucleic acid templates
- It can inform on a variety of different types of mutation and will probably replace a number of other tests
- Different assays have different strengths
- There are technical and interpretative issues

- Next Generation Sequencing (NGS) has three steps i.e. (i) library preparation, (ii) sequencing, (iii) data assembly.
- NGS can be performed at varying scales (whole genome sequencing / whole exome sequencing / targeted sequencing) to reveal different types of information.

New Developments in the laboratory: Liquid biopsy

Liquid biopsy What is Liquid Biopsy? Technical considerations

Utility and limitations

Circulating biomarkers

- Can interrogate cellular components shed into the bloodstream through tissue damage
- Includes cfDNA, RNA, miRNA, exosomes
- Can also interrogate circulating tumour cells

 both for the purposes of genotyping and
 for culture
- It is also called the "liquid biopsy"

NGH – circulating biomarkers

- Tumour screening
- Tumour presence after surgery
- Tumour recurrence
- Tumour response
- Tumour profiling for predictive testing, heterogeneity, prognosis etc.

cfDNA as a monitor of surgery

- We reasoned that surgical clearance of tumour could be monitored through testing tumour cfDNA
- Plasma has been collected from patients prior to surgery and every day after surgery until discharge
- DNA was extracted using standard kits
- We screened for mutations using HRM analysis

cfDNA as a monitor of surgery

- Initial data very promising with evidence of clearance and non-clearance of tumour
- Data were replicated by two different students
- However, there was variation between mutations and samples e.g. one mutation would appear to be cleared but another wouldn't; mutations would reappear after clearance
- Tests had to be re-optimised!

	58bp (K2)		158bp (PTEN 3)	
5 Day 1	29.52	32.57	36.90	35.94
6 Day 1	29.27	33.79	35.93	No Ct
7 Day 1	31.48	34.70	38.05	No Ct
8 Day 1	30.45	35.95	38.90	No Ct
9 Day 1	31.08	No Ct	34.25	No Ct
10 Day 1	30.04	33.87	36.14	No Ct
11 Day 1	30.54	33.43	37.36	No Ct
12 Day 1	29.36	33.21	35.32	36.88
13 Day 1	29.74	34.28	36.79	No Ct
14 Day 1	32.17	34.87	35.60	37.40
15 Day 1		No Ct	39.58	No Ct
16 Day 1	32.54	35.31	38.76	No Ct
Norm	30.46	32.26	34.91	37.72
NTC	37.25	No Ct	39.48	No Ct

Right shift occur's in the sample's with late take off. Sample 11 Day 1 and sample 12 Day 1.

cfDNA as a monitor of surgery

- Further testing of samples shows that size of PCR product is important
- We now design primers for a maximum of 100bp
- Further testing also shows that poor quality samples are developing artefacts
- These are samples with late take-off in the amplification plot although it is uncertain whether this is due to low DNA quantity or other factors

Utility of Liquid Biopsy in cancer

- Tumour screening
- Tumour presence after surgery
- Tumour recurrence
- Tumour response
- Tumour profiling for predictive testing, heterogeneity, prognosis etc.

(MP)

Learning points: Liquid Biopsy

- Liquid biopsy is the analysis of nucleic acids, exosomes or tumour cells circulating in the blood.
- Testing circulating nucleic acids in constrained by fragmentation of template and low quantity of template.

.

Overview • Digital Pathology • Utility / TuPaQ / HMM • Next Generation Sequencing • Principles and utility • Liquid biopsy

- Utility and limitations

