UK Standards for Microbiology Investigations

Identification of Haemophilus species and the HACEK group of organisms

National Institute for Health and Care Excellence (NICE) has renewed accreditation of the process used by the UK Health Security Agency to produce UK Standards for Microbiology Investigations (UK SMIs). The renewed accreditation is valid until 30 June 2026 and applies to guidance produced using the processes described in ‘UK Standards for Microbiology Investigations Development Process’ (2021). The original accreditation term began on 1 July 2011.

Issued by the Standards Unit, Specialised Microbiology and Laboratories, UKHSA
Identification | ID 12 | Issue number: dn+ | Issue date: dd.mm.yy | Page: 1 of 27
© Crown copyright 2024
Identification of Haemophilus species and the HACEK group of organisms

Acknowledgments

UK Standards for Microbiology Investigations (UK SMIs) are developed under the auspices of UKHSA working in partnership with the partner organisations whose logos are displayed below and listed on the UK SMI website. UK SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see the Steering Committee section on the RCPPath website).

The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the medical editors for editing the medical content.

UK SMIs are produced in association with:

![Displayed logos correct as of December 2023](image-url)
Identification of Haemophilus species and the HACEK group of organisms

Contents

Acknowledgments ...2

Contents ...3

Amendment table ..4

1 General information ...5

2 Scientific information ..5

3 Scope of document ..5

4 Introduction ...6

5 Technical information and limitations ...8

6 Safety considerations ...8

7 Target organisms ..9

8 Identification ...9

9 Storage ...15

10 Reporting ...16

11 Referral to reference or specialist laboratories ...17

Algorithm A: Identification of HACEK Species ...18

Algorithm B: Identification of Haemophilus species ...19

Algorithm C: Identification of other HACEK organisms ..20

References ...21
Identification of Haemophilus species and the HACEK group of organisms

Amendment table

Each UK SMI document has an individual record of amendments. The amendments are listed on this page. The amendment history is available from standards@ukhsa.gov.uk.

Any alterations to this document should be controlled in accordance with the local document control process.

<table>
<thead>
<tr>
<th>Amendment number/date</th>
<th>x/dd.mm.yy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue number discarded</td>
<td></td>
</tr>
<tr>
<td>Insert issue number</td>
<td></td>
</tr>
<tr>
<td>Anticipated next review date*</td>
<td>dd.mm.yy</td>
</tr>
<tr>
<td>Section(s) involved</td>
<td>Amendment</td>
</tr>
</tbody>
</table>

Reviews can be extended up to 5 years where appropriate
Identification of Haemophilus species and the HACEK group of organisms

1 General information

View general information related to UK SMIs.

2 Scientific information

View scientific information related to UK SMIs.

3 Scope of document

This UK Standards for Microbiology Investigations (UK SMI) document describes the identification of Haemophilus species and other members of the HACEK group of organisms (Aggregatibacter, Cardiobacterium, Eikenella and Kingella species). It includes culture, Gram stain and matrix assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) for the identification of microorganisms from culture. Some biochemical tests may not be done routinely in laboratory except in cases where confirmation by an alternative technique is required or automated methods are not available.

The test procedure for matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is covered in UK SMI TP 40: Matrix-assisted laser desorption/ionisation - time of flight mass spectrometry (MALDI-TOF MS) test procedure. It also includes molecular methods for alternative identification and confirmation.

This document mentions the differentiation of Kingella species from pathogenic Neisseria and Morexalla species. The identification of these genera are covered in UK SMI ID 6: Identification of Neisseria species and UK SMI ID 11: Identification of Morexalla species and morphologically similar organisms.

The direct identification of microorganisms from samples is beyond the scope of this document. For information related to direct identification, please refer to the other UK SMI categories.

Antimicrobial Susceptibility Testing (AST) is also beyond the scope of this document. However, for effective antibiotic stewardship, laboratories should perform AST on all clinically significant isolates, particularly in cases of poor treatment response. For further information related to AST, please refer to the other UK SMI categories.

This document addresses laboratory processes for microorganism identification and is not intended for primary healthcare guidance. For relevant information please refer to the UK SMI Syndromic documents.

UK SMIs should be used in conjunction with other relevant UK SMIs.
Identification of Haemophilus species and the HACEK group of organisms

4 Introduction

4.1 Taxonomy and characteristics

Haemophilus species

The genus *Haemophilus* is part of the family Pasteurellaceae in the order Pasterurellales (1). There are currently 8 species of the genus *Haemophilus* associated with human infection (1,2). *Haemophilus aphrophilus* and *Haemophilus paraphrophilus* have been reclassified as a single species based on multilocus sequence analysis, *Aggregatibacter aphrophilus*, which includes V-factor dependent and V-factor independent isolates. *Haemophilus segnis* has been reclassified as *Aggregatibacter segnis* (3,4). *Haemophilus influenzae* is the type species.

There are six antigenically distinct capsular types of *H. influenzae*, designated ‘a’ to ‘f’ based on the polysaccharide composition of the capsular structure. Isolates that do not express a polysaccharide capsule are referred to as non-capsulated or non-typeable (5). Before the introduction of a vaccine against serotype b (Hib), the majority of infections were caused by serotype b strains but incidence has significantly decreased following vaccination programme implementation (6). However, all types of *H. influenzae* (including non-typeable strains) can cause infections such as meningitis, bacteraemia, sepsis, otitis media and rhinosinusitis (7,8).

Other *Haemophilus* species associated with human infection are *Haemophilus aegyptius*, *Haemophilus haemolyticus*, *Haemophilus parainfluenzae*, *Haemophilus pittmaniae*, *Haemophilus paraeaeolyticus*, *Haemophilus paraphrohaemolyticus* and *Haemophilus ducreyi* (9).

Haemophilus species are fastidious, Gram negative coclobacilli or rods with marked pleomorphism. They are facultatively anaerobic, non-acid-fast, non-spore forming and non-motile (2,9). All species require either or both of two growth factors for growth: haemin (factor X) and/or nicotinamide adenine dinucleotide (factor V), which can be used to aid in identification of species (9,10).

Other HACEK group of organisms

A systematic approach is used to differentiate the HACEK group of clinically encountered, morphologically similar, aerobic, and facultatively anaerobic Gram-negative rods mainly associated with endocarditis and infections from normally sterile sites. These organisms are oropharyngeal/respiratory tract commensals (11,12).
Identification of Haemophilus species and the HACEK group of organisms

Aggregatibacter species

Aggregatibacter species are members of the family Pasteurellaceae. The genus Aggregatibacter contains 4 species, *Aggregatibacter actinomycetemcomitans*, *Aggregatibacter aphrophilus*, *Aggregatibacter segnis* and *Aggregatibacter kilianii*. The type species is *Aggregatibacter actinomycetemcomitans* (1).

A. actinomycetemcomitans has been found in endocarditis, brain abscess and urinary tract infections (3).

Aggregatibacter species are Gram-negative, non-motile, facultatively anaerobic, pleomorphic rods or coccobacilli. There is no dependence on X factor and the requirement for V factor is variable.

The species of the genus are intimately associated with humans; they are part of the human oral flora and are occasionally recovered from other body sites, including blood and brain, and as causes of infective endocarditis and abscesses.

Cardiobacterium species

The genus Cardiobacterium are members of the Cardiobacteriacaea family. The genus Cardiobacterium contains 2 species, *Cardiobacterium hominis* and *Cardiobacterium valvarum*. *C. hominis* is the type species (1,13). They are Gram negative, facultatively anaerobic, pleomorphic or straight rods and are arranged singly, in pairs, in short chains and in rosette clusters (14).

Eikenella species

The genus Eikenella is part of the Neisseriaceae family. Currently there are 5 species within the genus *Eikenella*. The type species is *Eikenella corrodens*, which is a coloniser of the oral mucosal membranes, the upper respiratory tract and possibly the gastrointestinal tract. Other species include *Eikenella exigua*, *Eikenella glucosivorans*, *Eikenella halliae*, *Eikenella loninqua* (1). Eikenella species are Gram negative, facultatively anaerobic (except for *E. loninqua*) small rods with occasional filaments. They are non-motile; however, some species exhibit a “twitching” motility (15,16).

Kingella species

The genus Kingella is in the Neisseriaceae family and comprises of five species, *Kingella kingae*, *Kingella denitrificans*, *Kingella potus* and *Kingella oralis*, *Kingella negevensis*, with *K. kingae* being the type species (1). *Kingella indologenes* has been transferred to a new genus and classified as *Suttonella indologenes* (17). They are Gram negative, non-motile straight rods with rounded or square ends. They occur in pairs and sometimes short chains (18).
Identification of Haemophilus species and the HACEK group of organisms

Kingella species may grow on Neisseria selective agar and therefore may be misidentified as pathogenic Neisseria species. The strain can be differentiated from Moraxella and Neisseria species by a catalase test. Most *Kingella* species are catalase negative; Moraxella and most Neisseria species (except *Neisseria elongata*) are catalase positive.

5 Technical information and limitations

With improvements to molecular taxonomy, species previously included in the Haemophilus genus have been reclassified into the Aggregatibacter genus (3).

Whilst no longer in the same genus, identification of these species can be difficult due to similarities in characteristics. Clinicians are encouraged to ensure they are aware of any further taxonomy changes and take this into account when interpreting laboratory results. All databases including MALDI-TOF MS, should be updated accordingly. Changes in taxonomy should be considered when using commercial identification systems.

6 Safety considerations

The section covers specific safety considerations (19-40) related to this UK SMI, and should be read in conjunction with the general safety considerations on the RCPPath website.

All HACEK species are Hazard Group 2 organisms and processing of diagnostic samples should be carried out at Containment Level 2.

H. influenzae is a Hazard Group 2 organism, and in some cases the nature of the work may dictate full Containment Level 3 conditions. All laboratories should handle specimens as if potentially high risk.

H. influenzae can cause serious invasive disease, especially in young children. Invasive disease is usually caused by encapsulated strains of the organism. Laboratory acquired infections have been reported (41). The organism infects primarily by the respiratory route (inhalation), autoinoculation or ingestion in laboratory workers (42).

Laboratory procedures that give rise to infectious aerosols must be conducted in a microbiological safety cabinet.

For safety considerations for individual tests, please see [UK SMI Test Procedures documents](#).

The above guidance should be supplemented with local COSHH and risk assessments.

Compliance with postal and transport regulations is essential.
Identification of Haemophilus species and the HACEK group of organisms

7 Target organisms
Please refer to Table 1 for all HACEK species associated with human disease.

8 Identification
Identification of Haemophilus and other HACEK species requires a combination of methods. Colonies on blood or chocolate agar may be presumptively identified by colonial morphology, microscopy, requirement for X and V factors and MALDI-TOF MS. Biochemical tests can be used in laboratories when MALDI-TOF MS is unavailable. If confirmation or further identification is required, samples are transported to reference or specialised testing laboratories.

8.1 Culture methods
Culture can be used to provide presumptive identification of HACEK organisms. Initial assessments of colonial morphology can dictate future testing when investigating potential HACEK isolates. Following presumptive identification, further techniques, including MALDI-TOF MS or biochemical tests can be used to further identify the species.

8.1.1 Bacterial growth medium
Haemophilus species require enriched media to support growth. They require either X and/or V factor. This can be added to medium unless chocolate blood agar is used (9). For the growth of *H. ducreyi* and *H. aegyptius*, growth medium should be further supplemented with growth factors, which are commercially available as a supplement (9).

All HACEK species are facultative anaerobes and grow best with 5-10% CO$_2$ present. The optimum growth temperature is between 35 and 37°C (9,43). HACEK species are slow growing and therefore most colonies can take between 24 and 48 hours, however *E. suipigua* and *C. valarum* can take up to 72 hours to become visible (16,44).

Primary isolation media
For Haemophilus species, incubation for 24-48 hours with enriched 5% chocolatised sheep blood agar at 35 to 37°C with 5 to 10% CO$_2$ is preferred (45). Blood agar can be used instead of chocolate agar, providing free V and X factor are supplemented.

Other HACEK species can be incubated for 24-48 hours on either chocolate blood agar or blood agar at 35-37°C with 5-10% CO$_2$ present (43).
Identification of Haemophilus species and the HACEK group of organisms

Selective media

Haemophilus selective agar is commercially available and contains horse blood and antibiotics (kanamycin and vancomycin). If not already present, bacitracin can be added to inhibit Neisseria species. Cultures should be incubated at 35-37°C with 5-10% CO₂ for 24-48 hours (9).

Selective media for A. actinomycetemcomitans is commercially available. Samples should be incubated at 35-37°C for 18-24 hours under anaerobic conditions (43).

8.1.2 Colonial appearance

Colonial appearance varies significantly with species, however generally:

- Haemophilus species produce colonies that are flat, convex and grey-white on blood agar (10)
- Aggregatibacter species produce colonies that are greyish-white/yellow, granular and rough (46)
- Cardiobacterium species produce smooth, convex and opaque colonies (14)
- Eikenella species produce colonies that may corrode the agar (15)
- Kingella species produce either spreading/corroding colonies or smooth, convex colonies (18)

For detailed descriptions of each species refer to section 8.2, Table 1.

8.2 Microscopic appearance

8.2.1 Gram stain

Please refer to UK SMNTP 39 - Staining procedures.

All HACEK species are Gram negative; however, some species may stain weakly.

- Haemophilus species are small-medium sized pleomorphic rods; however, spheres and coccobacilli can be seen (10)
- Aggregatibacter species tend to be rod-shaped, but coccobacilli can also be observed (46)
- Cardiobacterium species are straight rods with rounded ends and occasional long filaments (14)
- Eikenella species are usually straight, unbranched rods with rounded edges (15)
- Kingella species are straight rods with rounded/square ends. K. kingae does not Gram stain well (18)
Identification of Haemophilus species and the HACEK group of organisms

For information on the microscopic appearance of individual species refer to table 1 below.

Table 1: Microscopic and Colonial appearance of HACEK species (9,10,16,44,46-53)

Please note that the information in this table provides general characteristics of colony appearance and can vary among different strains and culture conditions.

<table>
<thead>
<tr>
<th>Species</th>
<th>Appearance</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. influenzae</td>
<td>Small, regular rods that can be mixed with coccobacilli. Colours are smooth, low, convex, greyish, translucent. Encapsulated strains can appear mucoid. Non-encapsulated stains produce small, buff colonies.</td>
<td>In 24 hours colonies grow to 1-2mm in diameter. Indole producing strains have an amine-like odour.</td>
</tr>
<tr>
<td>H. aegyptius</td>
<td>Slow-growing colonies. Colonies produced are smooth, low, convex and translucent.</td>
<td>Grow to 0.5mm diameter in 48 hours</td>
</tr>
<tr>
<td>H. ducreyi</td>
<td>Slender rods. Colonies are small, flat, smooth and grey. Larger colonies are sometimes seen mixed with smaller colonies.</td>
<td>Grows poorly. Can take 3-5 days to become visible. Can be surrounded by small zone of β-haemolysis.</td>
</tr>
<tr>
<td>H. pittmaniae</td>
<td>Small pleomorphic rods with occasional filamentous forms. Colonies are convex and grey-white.</td>
<td>Grow to 1-2mm diameter in 24 hours</td>
</tr>
<tr>
<td>H. parainfluenzae</td>
<td>Small pleomorphic rods interspersed with filamentous forms. Colonies are off-white to yellow colonies. Colony appearance can vary. The colonies can be flat and smooth or granular or wrinkled.</td>
<td>Grow to 1-2mm diameter in 24 hours. Some strains show β haemolysis. Colony appearance may change with age.</td>
</tr>
<tr>
<td>H. haemolyticus</td>
<td>Small, regular rods or spheres with occasional filamentous forms. Colonies are translucent, smooth, and convex.</td>
<td>Colonies grow to 0.5-1.5mm diameter after 24 hours. Produce a clear zone of β-haemolysis.</td>
</tr>
<tr>
<td>H. parahaemolyticus</td>
<td>Small, regular rods with occasional filamentous forms. Smooth colonies similar to H. parainfluenzae.</td>
<td>Produce zone β-haemolysis.</td>
</tr>
<tr>
<td>H. paraphaemolyticus</td>
<td>Small rods. Colonies similar to H. haemolyticus.</td>
<td>None</td>
</tr>
<tr>
<td>A. actinomycetemcomitans</td>
<td>Small pleomorphic rods. Rough, tenacious colonies with an internal, opaque pattern.</td>
<td>Colonies grow to diameter of 1-2mm after 48 hours. Colonies can be sticky if slime is produced.</td>
</tr>
<tr>
<td>A. aphrophilus</td>
<td>Short regular rods with occasional filamentous forms. Colonies are convex, opaque, granular, and yellowish.</td>
<td>None</td>
</tr>
</tbody>
</table>
Identification of Haemophilus species and the HACEK group of organisms

<table>
<thead>
<tr>
<th>Species</th>
<th>Appearance</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. segnis</td>
<td>Small pleomorphic rods, sometimes with irregular filamentous forms.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Colonies are slow growing. They are smooth, granular, convex, greyish-white, and opaque.</td>
<td></td>
</tr>
<tr>
<td>A. kiliani</td>
<td>Short regular rods with occasional filamentous forms.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Supplemented with CO2 colonies are granular, yellowish, and opaque.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Without CO2 colonies are small with larger colonies interspersed.</td>
<td></td>
</tr>
<tr>
<td>C. hominis</td>
<td>Small colonies produced unless in a humid atmosphere.</td>
<td>Colonies can cause some α-haemolysis.</td>
</tr>
<tr>
<td></td>
<td>Colonies are circular, smooth, moist and opaque.</td>
<td></td>
</tr>
<tr>
<td>E. corrodens</td>
<td>Colonies are small with a moist clear centre surrounded by flat spreading growth. Pitting of the medium can occur.</td>
<td>Non-haemolytic. Older cultures can turn yellow.</td>
</tr>
<tr>
<td>K. denitrificans</td>
<td>Colonies are small and translucent. They may show pitting of the medium.</td>
<td>None</td>
</tr>
<tr>
<td>K. kingae</td>
<td>Colonies produce small depressions. They have a central pilla and spreading growth with granular zones surrounding. Colonies can also be small, delicate, translucent/opaque.</td>
<td>Colonies can cause β-haemolysis.</td>
</tr>
<tr>
<td>K. oralis</td>
<td>Colonies are round with irregular borders. They are flat to umbonate with a granular periphery.</td>
<td>None</td>
</tr>
<tr>
<td>K. potus</td>
<td>Colonies are circular, convex, and smooth. They are often yellow pigmented.</td>
<td>Non-haemolytic.</td>
</tr>
<tr>
<td>K. negevensis</td>
<td>Colonies are round and smooth. They can be pale yellow in colour.</td>
<td>Colonies are β-haemolytic.</td>
</tr>
</tbody>
</table>

8.3 Matrix-Assisted Laser Desorption/Ionisation - Time of Flight Mass Spectrometry (MALDI-TOF MS)

MALDI-TOF MS is used as the primary method for the identification of HACEK species in diagnostic laboratories. Therefore, it is important that this method is appropriately validated, manufacturer instructions carefully followed, available database updates installed and reviewed, and the use of an extraction step that can contribute to a more reliable species identification should be considered.

MALDI-TOF MS is used for the identification of several Haemophilus species, including *H. influenzae*, *H. parainfluenzae*, *H. parahaemolyticus* (54,55). Databases
Identification of Haemophilus species and the HACEK group of organisms

that are used only for research may include other Haemophilus species including H. haemolyticus, however it should be noted that MALDI-TOF MS can incorrectly identify H. haemolyticus isolates as H. influenzae or H. parainfluenzae (56). In the case of suspected misidentification, results should be interpreted carefully, and further biochemical tests or molecular methods are recommended.

This technique accurately identifies members of the other HACEK genera, despite their fastidious nature (55,57). MALDI-TOF MS is effective for identification of Aggregatibacter species, C. hominis, E. corrodens and K. kingae (58). Some species, including A. killianii, K. negevensis and any new species resulting from taxonomy changes may not be included in the analyser databases. Laboratories are encouraged to check the MALDI-TOF MS databases used if these organisms are suspected. Biochemical testing is recommended for species not represented in the MALDI-TOF MS databases.

8.4 Further identification

8.4.1 Biochemical tests and commercial identification systems

Biochemical tests are no longer routine in laboratories but are used in cases when MALDI-TOF MS is unavailable or when MALDI-TOF MS results are inconclusive. Discrepancies in test results should be referred to the appropriate reference or specialist laboratories for further testing. Refer to the manufacturer’s guidance or the relevant chapters in the Manual of Clinical Microbiology book (9,43) for biochemical properties of individual HACEK species. Algorithms B and C contain examples of biochemical tests that may be used to differentiate between HACEK organisms.

Several commercial identification systems that use biochemical or enzymatic substrates are available for identification of Haemophilus species. The manufacturer’s instructions should be followed precisely when using these kits. In many cases, the commercial identification system may not reflect recent changes in taxonomy.

X and V factor Test

Please refer to UK SMI TP 38 – X and V Factor Test

Haemophilus species have a requirement for V factor, which can be helpful in species identification. X and V factor test can provide initial information on the species. Porphyrin tests can identify X factor dependent species. Negative porphyrin tests suggest X factor dependence. For X & V factor requirements of the relevant Haemophilus species see table 2 below.

The use of chocolate agar is preferable for species that require X and V factor for growth rather than blood agar or blood containing medium because of risk of carryover
Identification of Haemophilus species and the HACEK group of organisms

of X factor. The X and V factor testing could also be done using a basic nutrient agar, but for which the X and V discs have been validated in case it had trace factors that could influence the results. Manufacturers’ instructions should be followed when performing this test.

Please note that sometimes the X and V factor tests can give false V dependent results if incubated in CO₂ (69).

Table 2: Summary of X and V test results (9)

<table>
<thead>
<tr>
<th>Organism</th>
<th>X factor</th>
<th>V factor</th>
<th>β-haemolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. influenzae<sup>a</sup></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>H. parainfluenzae</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>H. haemolyticus<sup>b</sup></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H. parahaemolyticus</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H. paraphrohaemolyticus</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H. aegyptius</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>H. pittmaniae</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H. ducreyi</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

^a H. aegyptius is indistinguishable from H. influenzae biotype III in normal laboratory tests.

^b Traditionally described as β-haemolytic on horse blood agar, but non-haemolytic strains exist (60)

8.4.2 Serotyping H. influenzae with commercial type-specific antisera and PCR

If H. influenzae is detected, serotyping should be performed using slide agglutination or PCR testing. The presence of capsule polysaccharide can be detected by slide agglutination using commercial antisera. If positive, the individual serotype (a to f) can also be determined using antisera. Slide agglutination can sometimes generate ambiguous results and so the capsule type can be confirmed using multiple PCRs directed at targets within the capsule gene operon (61,62).

Some multi-species meningitis latex agglutination detection kits include antiserum against H. influenzae serotype b alone because of its historical dominance in causing meningitis and its relevance in detecting vaccine failures. However, it should be noted that not all latex agglutination detection kits are suitable for use on bacterial suspensions of H. influenzae (according to the manufacturer’s instructions).

8.4.3 Molecular Methods
Identification of Haemophilus species and the HACEK group of organisms

Molecular techniques have made identification of many species more rapid and precise than is possible with phenotypic techniques. However, some of these methods are difficult to implement for routine bacterial identification in a clinical laboratory and may be better sourced from a reference laboratory.

Other tests such as NAATs have been developed to identify H. influenzae and H. parainfluenzae in clinical specimens and some have been incorporated into commercial multi-pathogen detection systems (63). NAATs have been used to identify H. ducreyi in clinical specimens. A commercial multiplex PCR assay has been developed that permits the simultaneous amplification of DNA targets from H. ducreyi, Treponemal pallidum, and Herpes Simplex Virus types 1 and 2 directly from genital ulcer specimens (64).

A genotypic identification method, 16S rRNA gene sequencing has been used for better discrimination of closely related species such as C. hominis and C. valvarum (44,65). It has equally been used for identifying Haemophilus and Aggregatibacter species (60).

Next Generation Sequencing

Whilst currently limited to reference laboratories, Next Generation Sequencing (NGS) could become more common in clinical laboratories. Metagenomic NGS has been used to confirm identification of A. segnis and H. influenzae (66,67). NGS provides a quick and accurate means of identifying pathogens that could be potentially beneficial for routine diagnostics in the future (68).

9 Storage

For short term storage of HACEK species, isolates should be kept viable on chocolate blood agar supplemented with 5-7% CO₂ at 35-37°C (9).

For long term storage of HACEK species, isolates should be frozen at -80°C in a cryoprotective solution such as glycerol or trypticase soy broth (43,69).

If required, save pure isolates on a chocolate agar slope for referral to the reference laboratory.
10 Reporting

10.1 Infection Specialist

Inform the medical microbiologist of all positive cultures from normally sterile sites. Invasive *H. Influenzae* should be reported for surveillance purposes.

Certain clinical conditions must be notified to the laboratory associated infection specialist. Typically, these will include:

- Facial cellulitis
- Septic arthritis
- Osteomyelitis
- Epiglottitis, pneumonia, mastoiditis or empyema thoracis

Follow local protocols for reporting to clinician.

10.2 Routine identification

Initially appropriate growth characteristics, colonial appearance and Gram stain of the culture are indicative of a fastidious organism. Identification is made using MALDI-TOF MS or where not available using biochemical methods and appropriate X and V factors.

10.3 Confirmation of identification

Following identification serotyping of *H. influenzae* can be obtained from the reference or specialist laboratory.

For confirmation and identification please see Specialist and reference microbiology: laboratory tests and services page on GOV.UK for reference laboratory user manuals and request forms.

10.4 Health Protection Team (HPT)

Refer to local agreements in devolved administrations.

10.5 UK Health Security Agency

Refer to current guidelines on Second Generation Surveillance System (SGSS) reporting (35).

10.6 Infection prevention and control team

N/A
Identification of Haemophilus species and the HACEK group of organisms

11 Referral to reference or specialist laboratories

If isolates are being transported to further laboratories for testing, ensure specimen is placed in a sealed containing within appropriate packaging, following all relevant transport regulations. If required, save pure isolate on a chocolate agar slope for referral to the reference laboratory.

Isolates of *H. influenzae* from normally sterile sites should be sent to the Vaccine Preventable Bacteria Section, Respiratory and Vaccine Preventable Bacteria Reference Unit (RVPBRU), UK Health Security Agency (UKHSA) for confirmation and typing.

For information on the tests offered, turnaround times, transport procedure and the other requirements of the reference or specialist laboratory see user manuals and request forms.

Organisms with unusual/unexpected resistance, associated with a laboratory/clinical problem or an anomaly that requires investigation should be sent to the appropriate reference laboratory.

Contact appropriate reference or specialist laboratory for information on the tests available, turnaround times, transport procedure and any other requirements for sample submission:

- England
- Wales
- Scotland
- Northern Ireland
Algorithm A: Identification of HACEK Species

Clinical Specimen

Blood or chocolate blood agar in 35 to 37°C with 5 to 10% CO₂ for 24-48hr

See Table 1 for colonial appearance of specific species

MALDI-TOF MS

If MALDI-TOF MS unavailable

Gram stain

Negative

Conventional methods (Algorithm B and C)

Molecular methods

HACEK species

Not HACEK species

Other species

Perform confirmatory testing if required

This flowchart is for guidance only.
Identification of Haemophilus species and the HACEK group of organisms

Algorithm B: Identification of Haemophilus species

This flowchart provides a summary of biochemical tests to supplement algorithm A.

Specimen
Grown on blood/chocolate agar

X factor

Positive

H. influenzae
H. haemolyticus
H. aegyptius
H. ducreyi

Negative

H. parainfluenzae
H. parahaemolyticus
H. aegyptius
H. pilimanae

V factor

Positive

H. influenzae
H. haemolyticus
H. aegyptius
H. ducreyi

Negative

H. parainfluenzae
H. parahaemolyticus
H. aegyptius
H. pilimanae

Catalase

Positive

H. influenzae
H. parainfluenzae
H. haemolyticus
H. aegyptius
H. ducreyi

Negative

H. parahaemolyticus
H. parahaemolyticus
H. aegyptius
H. pilimanae

Oxidase

Positive

H. influenzae
H. parainfluenzae
H. haemolyticus
H. aegyptius
H. ducreyi

Negative

H. parahaemolyticus
H. parahaemolyticus
H. aegyptius
H. pilimanae

* 11–89% strains positive
** weakly positive

If required, refer to appropriate reference or specialist laboratory for confirmation testing

This flowchart is for guidance only.
Algorithm C: Identification of other HACEK organisms

This flowchart provides a summary of biochemical tests to supplement algorithm A.

Specimen Grown on blood agar

- Catalase
 - Positive
 - A. actinomyctemcomitans
 - Negative
 - A. aphrophilus
 - A. segnis
 - C. hominis
 - C. valvarum
 - E. corrodens
 - K. kingae
 - K. dentrificans
 - K. negevensis

- Oxidase
 - Positive
 - A. actinomyctemcomitans
 - C. hominis
 - C. valvarum
 - E. corrodens
 - K. dentrificans
 - K. oralis
 - Negative
 - A. aphrophilus
 - A. segnis

- Urease
 - Positive
 - Negative

*variable results

If required, refer to appropriate reference or specialist laboratory for confirmation testing.

This flowchart is for guidance only.
Identification of Haemophilus species and the HACEK group of organisms

References

An explanation of the reference assessment used is available in the scientific information section on the UK SMI website.

Identification of Haemophilus species and the HACEK group of organisms

12. Chambers ST and others. HACEK infective endocarditis: characteristics and outcomes from a large, multi-national cohort. PLOS ONE 2013: volume 8, issue 5, pages e63181. 10.1371/journal.pone.0063181

17. Dewhirst FE and others. Transfer of Kingella indologenes (Snell and Lapage 1976) to the genus Suttonella gen. nov. as Suttonella indologenes comb. nov.; transfer of Bacteroides nodosus (Beveridge 1941) to the genus Dichelobacter gen. nov. as Dichelobacter nodosus comb. nov.; and assignment of the genera Cardiobacterium, Dichelobacter, and Suttonella to Cardiobacteriaceae fam. nov. in the gamma division of Proteobacteria on the basis of 16S rRNA sequence comparisons. International Journal of Systematic Bacteriology 1990: volume 40, issue 4, pages 426-33.B, III

Identification of Haemophilus species and the HACEK group of organisms

Identification of Haemophilus species and the HACEK group of organisms

Identification of Haemophilus species and the HACEK group of organisms

Identification of Haemophilus species and the HACEK group of organisms

64. Orle KA and others. Simultaneous PCR detection of Haemophilus ducreyi, Treponema pallidum, and herpes simplex virus types 1 and 2 from genital ulcers. Journal of Clinical Microbiology 1996: volume 34, issue 1, pages 49-54.B, III

Identification of Haemophilus species and the HACEK group of organisms

